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ARTICLE INFO ABSTRACT

Keywords: Natural acids such as oxalic, formic or lactic acids are used as alternative treatments against Varroa destructor, the

Sublethal effect parasitic mite of honey bees (Apis mellifera). Lactic acid has recently been shown to impair mites’ grip skills

RNA seq d through local action after exposure of adult honey bees. However, little is known about the lethal and sublethal

;)vaall‘l;cl acias effects of lactic acid on honey bees. In this work, we investigated the effects of chronic oral exposure to lactic acid
N . through a contaminated diet on age-controlled worker bees. We monitored survival under artificial conditions,

Apis mellifera > R . X X

Treatment quantified lactate levels in various worker organs (the digestive tract, the thorax, the fat body, the head and the

haemolymph) and analysed the transcriptome of the workers’ heads. Our results indicate that consuming lactic
acid at residual concentration (1.5 mg/mL) did not impact the survival. No lactate accumulation was detected in
any of the honey bee organs analysed. Furthermore, transcriptomic analysis on the bees’ heads revealed no
differences in gene expression. While further research on sublethal effects is still needed, this work provides one
of the first reports on the off-target effects of lactic acid on honey bee health.

1. Introduction

Over the past two decades, growing concerns have emerged about
the effects of pesticides on pollinators. Even at sublethal concentrations,
these chemicals can alter various insect and parasite behaviours such as
food foraging, choice of mating partner or pheromonal communication
(Colin et al., 2020; Desneux et al., 2007; Simon-Delso et al., 2015). Such
sublethal effects may represent drawbacks for hosts, especially with
prolonged exposure (Rondeau et al., 2015). This issue is particularly
important for treatments against Varroa destructor, a major threat to Apis
mellifera. This parasite weakens colonies by feeding on bees and
spreading lethal viruses (Martin and Brettell, 2019; Piou et al., 2022,
2024). Moreover, persistent miticide residues stored in hive products
can impair honey bees’ olfactory memory and locomotion (Charreton
et al., 2015; Gashout et al.,, 2020) while mite populations are

increasingly developing resistances (Hernandez-Rodriguez et al., 2021).

Because of such resistance in parasites and sublethal effects on honey
bees, alternative solutions to synthetic chemical treatments against
V. destructor were developed like organic acids, namely oxalic, formic or
lactic acids (Eguaras et al., 2003; Maggi et al., 2016; Vilarem et al.,
2021). For lactic acid treatments, the only information available from
the field remains about its laborious way of application and its miticide
effect in hive (Charriere et al., 2004; Imdorf, 1989; Kraus and Berg,
1994). Laboratory studies have demonstrated that lactic acid can impair
V. destructor grip ability, both through direct application and when
applied to honey bees carrying mites (Vilarem et al., 2023a, 2023b,
2024). However, despite these promising findings, the potential
off-target effects of lactic acid remain underexplored (Genath et al.,
2020, 2021; Papezikova et al., 2017). A rigorous ecotoxicological
assessment of lactic acid is essential to fully understands its sublethal
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impacts on non-target organisms like A. mellifera, the host of
V. destructor (Benito-Murcia et al., 2022; Gashout et al., 2018; Higes
et al., 2020). While lactic acid is ubiquitous in the honey bee environ-
ment through food and the metabolism of lactate at the cellular level
(Brooks et al., 2022; Holscher et al., 2008; Strachecka et al., 2019), the
effects of its use in treatment on bees remain poorly characterized. Lactic
acid treatment typically involves spraying a 150 mg/mL lactic acid so-
lution onto hives two to three times to achieve effective mite control.
This application can expose honey bees to additional concentrations of
lactic acid through oral ingestion of residues in honey and topical con-
tact via the cuticle, potentially interfering with biological processes. As a
matter of fact, exchanges of lactate between glial cells and neurons play
a key role in the way of providing supply during high-energy demand
implied by neuronal activity in brain cells of Drosophila
(Gonzalez-Gutiérrez et al., 2020; Volkenhoff et al., 2015). Moreover,
disruption of lactate metabolism in glia or neurons impacts their mem-
ory and survival (Frame et al., 2023). Although direct data on lactate
role in the brain of A. mellifera are lacking, this organ holds a key role in
the maintenance of good health for honey bees and is often challenged
by chemicals (Zhi-Xiang et al., 2024). Therefore, investigating the sub-
lethal effects of lactate on the bee head, a central organ for treating
environmental stimuli and regulating honey bee behaviours (Wu et al.,
2017) is of prime interest.

In this study, we investigated the lethal and sublethal effects of
chronic oral exposure to lactic acid in honey bees (Fig. 1). We hypoth-
esized that such prolonged ingestion would disrupt lactate metabolism
within glial cells or neurons, thereby impairing memory and reducing
survival like in Drosophila (Frame et al., 2023). Additionally, we ex-
pected elevated level of lactate in specific tissues or haemolymph,
leading to acidosis, similar to the effects observed with oral exposure to
oxalic acid (Rademacher et al., 2017). We tested three lactic acid con-
centrations based on previous studies: the concentration sprayed in hive
against mites (150 mg/mL) (Kraus and Berg, 1994) along with the re-
sidual concentration (1.5 mg/mL) measured in honey after this sprayed
administration (Bogdanov et al., 1998). We also included an interme-
diate lactic acid concentration of 25 mg/mL, which in our previous
study resulted in reduced grip for mites (Vilarem et al., 2023b). Once the
survival curves established, we selected the sublethal duration of seven
days for chronic oral administration of food contaminated with lactic
acid. After the chronic exposure we measured lactate concentration in
honey bees’ organs and haemolymph to check for acidosis (Fig. 1). Be-
sides, we used transcriptomic as a tool to investigate sublethal effects on
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the head, a crucial body part in the preservation of health for honey bees
when challenged by chemicals.

2. Material and methods

All our studies were conducted according to the European ethics laws
for scientific research currently in force. The experiments were led in
2023 during spring, summer, and autumn using honey bees from three
Buckfast colonies provided by ADA Occitanie (France). The colonies
were maintained on the University campus (Albi, France). They were
only treated for a month the previous year with oxalic acid. No treat-
ment was applied during the experiments or during the previous six
months. Infestation rates were monitored weekly throughout the ex-
periments, with an average of 1 % observed.

2.1. Acid preparation

Lactic acid was purchased from Thermoscientific, USA. Dilutions of
lactic acid (90 %) (CAS no. 50-21-5) were made with a 50 % (w/v) su-
crose solution. All stock solutions were kept at 4°C. Final concentrations
were 1.5, 25 and 150 mg/mL of lactic acid. Note that 150 mg/mL was
chosen because it is the standard concentration used by beekeepers to
control V. destructor (Kraus and Berg, 1994). In addition, 25 mg/mL
serves as an intermediate level: under laboratory conditions, it has been
shown to induce mites’ fall (Vilarem et al., 2023a). Lastly, 1.5 mg/mL
reflects the concentration detected in honey following a hive spray
treatment with lactic acid at 150 mg/mL (Bogdanov et al., 1998).

2.2. Honey bees sampling

Brood frames containing newly emerged adults from three different
hives were brought back to the laboratory and placed in an incubator set
to 28°C and 60 % relative humidity (RH). They remained under these
conditions for two hours, allowing the bees to emerge fully. Newly
emerged bees were identified using a water-based marker (Posca™) and
put back to their respective colonies. Seven days later, groups of ten
marked bees were taken to the laboratory and kept in experimental
cages (Pain type: 10.5 x 7.5 x 11.5 cm) in an incubator (28°C, 60 %
RH) to conduct experiments detailed in Table 1. It should be noted that
7-day-old bees were selected because they are in a stable developmental
window characterized by consistent behavioural roles, stable physio-
logical profiles and mature learning abilities. These factors make them
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Fig. 1. Schematic diagram of the experimental design for chronic oral exposure of Apis mellifera to lactic acid. Newly emerged bees (N = 300/colony) were collected
and marked from three different hives, then reinserted in their respective colonies. After seven days, marked workers (N = 30/condition) were collected again and
transferred into experimental cages, where they were provided with either a sucrose solution (control group) or a lactic acid contaminated solution at concentrations
of 1.5, 25 or 150 mg/mL. The exposure lasted 14 days (14D) in the case of survival assessment or 7 days (7D) for organ analysis with HPIC (High-Performance Ionic

Chromatography) and transcriptomic.
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Table 1
Overview of the sample size for each experiment.

Experiments Conditions N/ hive Number of Total
hives
Survival Control (50 % 10honey 3 30 honey
experiment sucrose solution) bees bees
1.5 mg/mL of lactic 10honey 3 30 honey
acid (0.01 mol/L) bees bees
25 mg/mL of lactic 10honey 3 30 honey
acid (0.27 mol/L) bees bees
150 mg/mL of 10honey 3 30 honey
lactic acid bees bees
(1.66 mol/L)
Dosage HPIC Control 5 honey 3 15 honey
organs bees bees
Treated with lactic 5 honey 3 15 honey
acid (1.5 mg/mL) bees bees
Dosage HPIC Control 10honey 3 30 honey
haemolymph bees bees
Treated with lactic 10honey 3 30 honey
acid (1.5 mg/mL) bees bees
RNA seq Control 6 honey 3 18 honey
bees bees
Treated with lactic 6 honey 3 18 honey
acid (1.5 mg/mL) bees bees

homogeneous organisms for toxicological, cognitive and transcriptomic
experiments (Li et al., 2019; Ray and Ferneyhough, 1997; Wheeler et al.,
2015).

Regarding the presentation of the statistics and results, note that for
HPIC dosage, organs were pooled by 5; for haemolymph honey bees
were pooled by 10; for RNA seq heads were pooled by 3.

2.3. Survival experiment

Treatment — Each cage containing ten honey bees was supplied with
two gravity feeders: one filled with water and the other one with a 50 %
(w/v) sucrose solution. The sucrose solution was either contaminated
with lactic acid at final concentrations of 1.5, 25, 150 mg/mL or left
uncontaminated as a control group. According to the standard methods
for toxicology research in honey bees, feeders were replaced once daily
throughout the exposure period (Medrzycki et al., 2013).

Survival — The chronic oral exposure lasted fourteen days in an
incubator (28°C, 60 % RH) with three replicates per condition (Table 1).
Dead bees were retrieved daily and counted. Water and food con-
sumptions were weighed every day for the duration of the experiment
and divided by the number of alive bees. Natural evaporation was
considered and retrieved from the measured consumption of food and
water (Figure A). Note that the lethal concentration (LCsg) is defined as
the concentration of lactic acid that causes 50 % mortality in honey bee
population under controlled conditions (Desneux et al., 2007). In
contrast, a sublethal concentration refers to a level of lactic acid that
does not result in immediate death but can lead to a measurable bio-
logical effect in honey bees (Desneux et al., 2007). To ensure a more
cautious approach than the sublethal definition, we chose to take the
day before any death events for the sublethal experiment.

2.4. Organ and haemolymph dosage of lactic acid with high-performance
ionic chromatography (HPIC)

Treatment — The first mortality events in honey bees exposed to
1.5 mg/mL of lactic acid occurred on day 8 of the chronic oral exposure
(Fig. 2). Therefore, to assess sublethal effects, we initiated the experi-
ment on day 7, prior to any mortality occurrences (Fig. 1). Each cage,
containing ten honey bees, was equipped with two gravity feeders: one
filled with water and the other one with a 50 % (w/v) sucrose solution.
The sucrose solution was either contaminated with lactic acid at a final
concentration of 1.5 mg/mL or left uncontaminated as a control group.
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Fig. 2. Survival probability of caged honey bees during chronic oral exposure
to lactic acid (1.5, 25 & 150 mg/mL) or sucrose solution (control) for 14 days,
N = 30/treatment, *** indicates p-value< 0.0001. The survival probability of
honey bees fed with 150 mg/mL lactic acid was significantly reduced (Kaplan-
Meier p-value<0.0001). However, food intake was also measured and indicated
that honey bees avoided consumption at this concentration (Figure A). Simi-
larly, at 25 mg/mL, survival probability also decreased significantly likely due
to reduced food intake rather than direct toxicity (Kaplan-Meier p-val-
ue<0.0001 & Figure A).

Dissection and purification — After a seven-day chronic oral exposure
to 1.5 mg/mL of lactic acid or a 50 % (w/v) sucrose solution (Fig. 1),
honey bees were lethally cooled at 4°C for 30 min and dissected on ice.
Haemolymph was collected through the antennae and pooled in groups
of ten per tube (Borsuk et al., 2017). Digestive tract was pulled out, head
and thorax were cleaved with a scalpel. Lastly, fat body were dissected
from the abdomen (Carreck et al., 2013). Five organs were pooled
together in 1 mL of ultrapure water and kept on ice (Table 1). Tissues
were disrupted with a TissueLyser II (Qiagen, Germany) and three iron
beads (3 mm) for 1 min at 30 Hz. A filtration step (0.2 um) was fol-
lowed, and each tube was stored at —20°C until further analysis.

HPIC analysis — Each sample was unfrozen, centrifugated and filtered
(0.22 um PTFE syringe filter) prior to analysis of lactate concentrations
by high-performance ionic chromatography with AS11-HC-4 um col-
umn, solvent: KOH, gradient from 1 mM to 44 mM (Dionex Ics-5000+,
Thermo Fisher Scientific Inc., Waltham, MA, USA) following standard
procedures with conductometric cell and UV absorption at 194 nm.
Results are presented per honey bee for an easier comparison.

2.5. RNA sequencing

Treatment — After seven days of chronic oral exposure to 1.5 mg/mL
lactic acid or a 50 % (w/v) sucrose solution for the control group
(Fig. 1), honey bees were directly lethally frozen at —80°C (Carreck
et al., 2013; Evans et al., 2013).

Dissection — Their heads were cleaved with a scalpel, weighed, cut in
half, immersed in RNAlater® (Thermo fisher scientific, USA) and stored
at —80°C. Pool of three heads were gathered by tube (Table 1).

RNA extraction — Tissue disruption was led with a TissueLyser II
(Qiagen, Germany) and three iron beads (3 mm) for 1 min at 30 Hz in
the lysate buffer Qiagen. Total RNA was then extracted with RNeasy
Midi Kit® (Qiagen, Germany), following the manufacturer protocol.

Quality check & RNA sequencing — RNA quality was checked using a
BioAnalyzer (Agilent 2100) according to manufacturer standard pro-
cedures. Samples were sent to GeT-PlaGe platform for final quality
control, RNA concentration and purity were determined using a ND-
8000 Spectrophotometer (Thermo Fisher Scientific, Waltham, USA).
Integrity of RNA was checked with a Fragment Analyzer (Agilent
Technologies, Santa Clara, USA), using the RNA Standard Sensitivity Kit.
RNA-seq paired-end libraries were prepared according to Illumina pro-
tocol with some adjustments, using the TruSeq Stranded mRNA library
prep Kit (Illumina, San Diego, USA). Libraries were equimolarly pooled
and RNA sequencing was then performed on one S4 lane of the Illumina
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NovaSeq™ 6000 instrument (Illumina, San Diego, USA), using the
NovaSeq 6000 S4 v1.5 Reagent Kit (300 cycles), and a paired-end
2 x 150 pb strategy. This generated approximately 50 M reads per
sample.

Bioinformatic analysis pipeline — All samples were analysed separately
through the quality control, mapping and quantification steps through
the nf-core (Ewels et al., 2020) RNA-Seq pipeline (version 3.12) (Patel
et al., 2024). Briefly, raw sequences filtered with fastp, mapped to the
Apis  mellifera  genome sequence Amel HAv3.1 (Genbank:
GCA_003254395.2) using STAR and RSEM were used to generate the
expression matrix. The quality of the reads was assessed at different
steps of the pipe-line with FastQC, QualiMap and SAMtools.

2.6. Statistical analyses

The statistical analysis of survival and lactate quantification were
carried out using standard methods on R software (version 4.0.5). Sur-
vival probability was analysed over fourteen days through a Kaplan-
Meier method with the survival and survminer packages (Alboukadel
et al., 2022; Therneau, 2023). For lactate quantification in each organ,
as the data did not meet the assumptions for parametric tests, results
were presented as boxplots and analysed using Wilcoxon rank tests to
assess the differences between treated and control bees.

Exploratory analysis of RNA-seq data was first performed using a
Principal Component Analysis (PCA) on pseudo-counts (log2 trans-
formed counts) with R software. Differential expression analysis was
then performed using edgeR (Robinson et al., 2010) standard approach:
A Generalized Linear Model (GLM) with two fixed effects for the treat-
ment and the hive (blocking factor) was estimated. Only the treatment
effect was assessed during test. All p-values were corrected for multiple
testing using the Benjamini-Hochberg correction (Benjamini and
Hochberg, 1995) that controls the False Discovery Rate (FDR). PLS-DA
was also performed using the mixOmics package (version 6.26.0) from
R/Bioconductor (Rohart et al., 2017). Its predictive performance was
assessed with the perf function, using leave-one-out cross-validation.
Given the sample size, K-fold cross-validation is not considered
appropriate.

3. Results

3.1. Longevity of caged honey bees after chronic oral exposure to lactic
acid

We administered lactic acid to honey bees via feeding at three
different concentrations (1.5, 25, 150 mg/mL). Honey bees exposed to
150 mg/mL showed a significant reduction in survival probability
(Fig. 2, Kaplan-Meier p-value<0.0001). However, food intake data
indicated that honey bees refused contaminated feed at this concentra-
tion (Figure A). At 25 mg/mlL, survival also declined significantly, again
probably due to a reduced consumption of food (Fig. 2, Kaplan-Meier p-
value<0.0001 & Figure A). Thus, starvation rather than direct toxicity
seems to explain the mortality at the two higher concentrations (25,
150 mg/mL) preventing accurate lactic acid exposure. In contrast,
honey bees fed 1.5 mg/mL of lactic acid showed survival rates compa-
rable to controls (sucrose solution) over a 14-day period (Fig. 2, Kaplan-
Meier p-value= 0.87) and their food consumption did not differ signif-
icantly from controls.

3.2. No lactate acidosis in honey bee organs or haemolymph after lactic
acid chronic oral exposure

In the survival experiment, no honey bees fed 1.5 mg/mL of lactic
acid (treated group) died before day 8, thus sublethal effects were
investigated on day 7. After seven days of chronic oral exposure to lactic
acid, the median quantity of lactate measured in the digestive tract was
2.399 pug/bee, which was not statistically different from the control
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group at 2.738 pg/bee (Fig. 3A, Wilcoxon rank test, W = 4, p-value = 1).
This suggests that chronic oral exposure to lactic acid does not signifi-
cantly alter lactate levels in the digestive tract of honey bees.

There was also no significant difference in the thorax with 0.638 nug/
bee for the treated group and 0.548 pg/bee for the control group
(Fig. 3B, Wilcoxon rank test, W = 3, p-value = 0.7). Although the Wil-
coxon test only compared six points and a slight increase was observed
in both the fat body and the head after treatment, the differences be-
tween the two groups do not appear to be statistically significant.
Indeed, we measured 0.072 pg/bee of lactate in the fat body when
treated and 0.052 ug/bee in the control group (Fig. 3C, Wilcoxon rank
test, W = 3, p-value = 0.7). Furthermore, the median quantity of lactate
measured in heads when treated was 0.091 ug/bee and for control bees
0.061 pg/bee (Fig. 3D, Wilcoxon rank test, W = 2, p-value = 0.4). These
results indicate that chronic oral exposure to lactic acid does not seem to
alter lactate concentrations in the thorax, fat body or head of honey
bees.

Lastly, after seven days of oral chronic exposure to lactic acid, the
median lactate quantity measured in the haemolymph (0.047 mg/mL)
was not statistically different from the control group with 0.062 mg/mL
(Fig. 4, Wilcoxon rank test, W = 4, p-value = 1). This demonstrates that
chronic oral exposure to lactic acid does not systematically increases
lactate levels in the haemolymph of honey bees.

3.3. Transcriptomic analysis revealed no changes in gene expression after
lactic acid chronic oral exposure in honey bee heads

Sequencing the RNA samples generated an average of 50 million
reads of paired end sequences with 150 bp length, aligned to A. mellifera
reference genome (Amel HAv3.1-Genbank assembly accession
GCA_003254395.2 (Wallberg et al., 2019)).

For the PCA (Principal Component Analysis) in Fig. 5A, two PCs are
sufficient to explain a large proportion of the variance and the projection
of the individuals does not show a strong condition effect. Over the
11,643 genes expressed in bee head, the differential analysis displayed
on the volcano plot highlights that only 1 gene transcript has a signifi-
cant lower expression in the treated group compared to the control
group (Fig. 5B, NB GLM adjusted p-value = 0.021). This gene,
LOC113219138, is a non-coding RNA not identified for A. mellifera.
However, a blast analysis showed potential mapping with the Asian
honey bee, A. cerana for an “integrin”. To further support these con-
clusions, PLS-DA was applied, and its misclassification error rate was
estimated using leave-one-out cross-validation. The resulting model
showed poor predictive performance (with error rates ranging from
33 % to over 50 %), confirming the absence of a clear relationship be-
tween the treatment and gene expression profiles.

4. Discussion

This study represents the first investigation into the lethal and sub-
lethal effects of chronic oral exposure to lactic acid in honey bees. We
used age-controlled honey bees, as lactate concentrations vary along life
of bees (Strachecka et al., 2019). We hypothesized that lactic acid
exposure would elevate lactate levels in the digestive tract triggering
dysbiosis (Paris et al., 2020). Meanwhile in the thorax we anticipated
flight impairment due to muscles soreness and mitochondrial oxidative
stress (Strachecka et al., 2019). Lastly in the head, we anticipated that an
increase in lactate could enhance memory consolidation (Ho et al.,
2024; Sun et al., 2017). Our findings revealed that after three days of
administering a 150 mg/mL lactic acid solution (corresponding to the
treatment in hive), all caged honey bees were dead. However, the direct
toxicity of the organic acid was not conclusively involved, as we
measured daily food consumption and observed that honey bees likely
died from starvation (Figure A). It is consistent with our previous study
showing that honey bees tend to avoid lactic acid at 150 mg/mL as it
seems repulsive (Vilarem et al., 2024). While this avoidance could
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Fig. 3. Lactate quantities in honey bee organs following chronic oral exposure to lactic acid (treated group) or a sucrose solution (control group). Lactate levels were
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Fig. 4. Concentration of lactate in honey bee haemolymph after chronic oral
exposure to 1.5 mg/mL lactic acid (treated group) or a sucrose solution (control
group). Each dot represents a pool of 10 bees. “ns” stands for non-significant.

disturb the chemical communication within the hive (Bortolotti and
Costa, 2014), it can also serve as a protective mechanism, preventing
over ingestion of high lactic acid concentrations. Besides, we found no
lethal effects when lactic acid was ingested at residual concentration
(1.5 mg/mL) which is the most plausible scenario in hives after the
sprayed treatment at 150 mg/mL (Bogdanov et al., 1998). These results
align with field observations, indicating that lactic acid treatments do
not notably impact honey bee survival (Domatskaya et al., 2020; Kraus
and Berg, 1994). Even though no significant reduction of survival was
observed in the 1.5 mg/mL treated group compared to controls, we

chose to examine sublethal effects in the absence of mortality.

A key parameter to consider is that lactic acid dissolved in water
undergoes deprotonation, forming lactate ion. Given that Hymenoptera
haemolymph has a pH measured around 6.7, the lactate form prevails
within the honey bees’ body (Matthews, 2017; Phypers and Pierce,
2006). Therefore, exposure to lactic acid could lead to elevated internal
concentrations of lactate which in turn could affect essential metabolic
pathways. Indeed, lactate balance preservation within the body remains
crucial. For instance, lactate concentration among other glucose pre-
cursors regulates the rate of gluconeogenesis, a pathway generator of
ATP, one of the most important factor in the lifespan of an organism
(Berg et al., 2015; Tresguerres, 2016). In honey bees, the Cori-cycle
occurs when muscles need energy, glucose and lactate are inter-
converted between muscles and the fat body (Strachecka et al., 2019).
This cycle is essential for keeping steady glucose levels during high
energy demand periods like flights (Schippers et al., 2010).

Besides, elevated lactate concentrations can indicate an exceeding of
the anaerobic threshold with the following development of metabolic
acidosis. To assess this risk, we checked lactate concentrations in the
haemolymph and various organs of both treated and untreated honey
bees to determine the potential of lactate acidosis but also to identify
organs where lactate accumulation could occur and become prejudicial
(Li et al., 2022). As demonstrated by previous studies (Kwong and
Moran, 2016; Strachecka et al., 2019) and in Figure B, lactate is
distributed throughout the honey bee’s tissues, with the highest con-
centration in the digestive tract, followed by the thorax, head and fat
body, underlying its ubiquitous nature. However, we did not find a
significant lactate increase when treated with lactic acid, suggesting that
lactate homeostasis across the body is tightly regulated and limiting the
risk of lactate burst. In the bee organs, the measurement was performed
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Fig. 5. Differential analysis of head gene expressions in honey bee workers:
comparison between control and lactic acid groups (1.5 mg/mL) following
chronic oral exposure. (a) PCA (Principal Component Analysis) with control
group in red and exposed to lactic acid group in blue. “H” stands for the hive
number and “S” for the sample number. Each dot represents a hive with 3 heads
pulled. Barycenters are shown as a bigger triangle for exposed to lactic acid and
a bigger dot for control groups. (b) Volcano plot illustrating the differential
gene expression profiles in the heads of honey bee workers exposed to lactic
acid compared to controls. Green dots indicate the non-DEGs. The red dot
represents the down regulated gene (FDR < 0.05) in the head of honey bee
workers exposed to lactic acid. “NS” stands for non-significant and “FDR” for
false discovery rate.

randomly on individuals fed ad libitum. However, future studies should
explore the kinetics of lactate absorption and assimilation following
ingestion. In other organic acids such as ascorbic acid, a recovery phase
in the haemolymph has been documented (Harz et al., 2010). More
studies are needed to investigate the role of lactate and its involvement
in honey bee metabolism. Nevertheless, our results suggest a homeo-
static modulation of lactate, consistent with the regulation of a native
molecule with an already effective cellular machinery (Brooks et al.,
2022).

Additionally, honey bees are exposed to multiple environmental
contaminants, including pesticides. Some studies have demonstrated
impacts on bee lactate metabolism (Almasri et al., 2021). For instance,
certain fungicides have been shown to inhibit mitochondrial respiration
and ATP synthesis in honey bees, directly compromising oxidative
metabolism and thus triggering increased lactate production (Nicodemo
et al., 2020). On one hand, co-exposure to lactic acid and these pesti-
cides could overwhelm honey bees’ physiological regulation (Kang
et al.,, 2025). The resulting accumulation of lactate in tissues could
provoke acidosis (Rademacher et al., 2017), muscle soreness during
flight (Strachecka et al., 2019), and energy inefficiency, leading to
metabolic disruptions that warrant further investigations. On the other
hand, probiotic supplementation in hives, containing lactic acid bacteria
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and lactic acid, showed interesting results. In some cases, it helped in-
crease hive populations or boost honey production (Maggi et al., 2013;
Patruica and Hutu, 2013). In others, it reduced the presence of patho-
gens like N. ceranae, demonstrating the potential benefits of lactic acid in
multifactorial environments (Maggi et al., 2013; Vasquez et al., 2012).

Despite the lack of significant difference, lactate level increased
slightly in honey bee heads after chronic oral exposure to lactic acid.
Lactate is considered as a signalling molecule, and it is particularly
important for biological processes like brain executive functions (Sun
et al., 2017). For instance, experimental evidence underlines the role of
lactate in cognitive function not only as a metabolic substrate for neu-
rons but also as a signalling molecule driving synaptic plasticity in
humans, mice and Drosophila (Cali et al., 2019; Gonzalez-Gutiérrez
etal., 2020; Ho et al., 2024; Yang et al., 2014). Therefore, an increase in
lactate levels in honey bee brain, specifically within neurons or glial
cells, could enhance long-term memory. This is because lactate gener-
ated by glial cells fuels neurons during memory consolidation, a mech-
anism well-established in Drosophila and others organisms (Bajaffer
et al., 2022; Dembitskaya et al., 2022). Moreover, lactate produced by
glial cells serves as a metabolic substrate for mushroom body neurons,
which are crucial for olfactory learning and memory in bees. Chronic
oral supplementation of lactate via lactic acid treatment could poten-
tially enhance learning and memory in honey bees (Alberini et al., 2018;
Basu et al., 2024; Ho et al., 2024). Nevertheless, to our knowledge there
is no study about the role of lactate in honey bee memory (Menzel, 2021;
Popov and Szyszka, 2020). To check possible side effects post-treatment,
we ran a differential transcriptomic analysis on bees’ heads. The lack of
difference between treated and control showed that the residual con-
centration seemed well managed physiologically by honey bees. Addi-
tionally, no modifications from potential pathways related to the lactate
homeostasis were detected (Magistretti and Allaman, 2018; Mason,
2017; Wang et al., 2019). It is important to underline that in contrast to
other treatments against V. destructor, lactic acid did not seem to alter
the regulation of the detoxification genes as demonstrated for
tau-fluvalinate or formic acid (Gashout et al., 2018; Li et al., 2019), nor
memory-related genes like formic acid or thymol (Gashout et al., 2020).

5. Conclusion

In this study, we examined the lethal and sublethal effects of chronic
oral exposure to lactic acid in honey bees. We hypothesized that pro-
longed ingestion might disrupt lactate metabolism in glial cells or neu-
rons, potentially impairing memory and reducing survival, as observed
in other insect species. However, we did not detect any significant
changes in gene expression in the bees’ heads. Notably, the highest
concentration of lactic acid led to lethal effects presumably due to
starvation, which might ultimately alter colony functions and justify
further investigation. Additionally, no increase in lactate levels was
detected in tissues or haemolymph. This suggests that acidosis did not
occur, unlike what is seen with oxalic acid oral exposure. Yet, the risks
associated with co-exposure to pesticides in the field should be
addressed to prevent potential acidosis and its metabolic consequences
for honey bees. While our study focused on chronic oral exposure,
known to trigger sublethal effects in several other treatments, exploring
the combination of chronic oral and topic exposures could provide
complementary insights. Our encouraging results call for future studies
to better characterize the impact of lactic acid treatment on bee colonies,
including their dynamics and behaviours.
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