10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

A single-cell atlas of transcriptome changes in the intestinal epithelium at the suckling-to-weaning
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Synopsis
We provide a single cell atlas of the intestinal epithelium during weaning. Solid food induced extensive, cell
type-specific transcriptome changes. BEST4" cells, which are absent in mice, show pronounced responses,

highlighting the rabbit as a valuable model to study the mammalian intestinal epithelium.

Abstract

Background & aims:

The suckling-to-weaning dietary transition is a key step in intestinal development. The aim of our study was
to identify the transcriptome changes induced in each cell type of the intestinal epithelium at the onset of
solid food ingestion.

Methods:

We compared the single-cell transcriptome of epithelial cells isolated from the caecum of age-matched
littermate suckling male rabbits ingesting or not solid food.

Results:

Our dataset provides the first single-cell atlas of the rabbit intestinal epithelium and highlights the interest of
the rabbit as a model for studying BEST4" epithelial cells, which are absent in mice. Solid food ingestion
induced extensive transcriptome changes in each epithelial cell type, with the most pronounced changes
noted in absorptive and BEST4" cells. Some of the effects of solid food introduction were common to most
epithelial cell types, such as the upregulation of ALDH1A1. Solid food ingestion remodeled epithelial
defenses systems, as observed by the increased expression of interferon-stimulated genes in mature
absorptive and BEST4" cells. Solid food upregulated the gene expression of the immunoglobulin transporter
PIGR in cells located at the base of epithelial crypts and in goblet cells. In addition, solid food triggered
epithelial differentiation, which was associated with modification of the expression of genes involved in
handling of nutrients, as well as changes in hormone expression by enteroendocrine cells. These cell type-
specific transcriptome modifications induced by solid food ingestion coincided with changes in microbiota

composition and were replicated, in part, by butyrate in organoids.
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Conclusions:
Our work provides a single-cell atlas of the transcriptome changes induced in the intestinal epithelium at the

suckling-to-weaning transition.

Key words:

Weaning, epithelium, gut, postnatal development, early life, scRNA-seq, organoids
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Introduction

The intestinal epithelium contributes to digestion and allows nutrient absorption while providing a physical
and immunological barrier against microorganisms and toxic compounds '. This dual functionality is
enabled by specialized absorptive and secretory epithelial cells, all derived from actively dividing stem cells
located at the crypt base °. Single-cell transcriptomics (scRNA-seq) has recently deepened our understanding
of the cellular diversity of the intestinal epithelium *®. Absorptive cells now emerge as a heterogeneous
population with distinct functions along the crypt-villus axis ®’. Additionally, BEST4" cells were recently
identified as a novel subset of mature absorptive cells with potential roles in ion transport, mucus hydration,
and secretion of antimicrobial peptides and hormones ®. Broad cellular diversity is also observed in the
secretory cell lineage, as exemplified by the numerous subtypes of enteroendocrine cells (EEC) defined by
their hormone secretion profiles °. Heterogeneous populations of mucus-secreting goblet cells have also
been identified along the crypt-villus axis with a zonation of their antimicrobial activities "'°. However, this
newly uncovered diversity of epithelial cells is minimally understood in the context of postnatal intestinal

development.

After birth, the intestinal epithelium of the mammalian newborn undergoes a maturation process that
culminates at the suckling-to-weaning transition "', Indeed, the dietary switch from maternal milk to solid
food is associated with an adaptation of epithelial digestion, absorption and transport systems enabling the
transition from a high-fat diet to a carbohydrate-based diet *'*. The onset of solid food ingestion also
coincides with a reduced epithelial permeability linked to a remodeling of epithelial defense systems
including tight junctions, microbial detection systems, glycosylation and secretion of antimicrobial peptides
and mucus >, This epithelial developmental process follows a genetically wired program tuned by several
factors including changes in glucocorticoid levels, the introduction of solid food, and the cessation of
suckling ***, In addition, ingestion of solid food also strongly alters the composition of the gut microbiota,
which contributes to the induction of epithelial maturation, notably through the release of bacterial

metabolites such as butyrate ***, A defect in host-microbiota co-maturation around weaning is known to

5
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increase the susceptibility to inflammatory or metabolic diseases later in life *>%. It is therefore essential to
understand the mechanisms underlying epithelial maturation at the suckling-to-weaning transition.
However, a large knowledge gap exists regarding epithelial cell type-specific adaptations triggered by the

introduction of solid food in the diet.

Transcriptomic regulations induced in the intestinal epithelium during the transition from milk to solid food
were described in mice **?’. However, these studies did not delineate the relative contributions of age and
nutrition in epithelial maturation. In fact, controlling dietary intake in early life is difficult in mice because
the stress of separation from the mother disrupts the gut barrier function *. In contrast, in rabbits, suckling
occurs only once per day for about 5 minutes and there is naturally little contact between the mother and her
litter *. This unique behavior allows to control milk and solid food ingestion in early life by housing
separately the mother and her litter *. In addition, we have recently shown that BEST4" cells are present in
the intestinal epithelium of rabbits, whereas these cells are absent in mice ®. Thus, the rabbit is a valuable
model to study the maturation of BEST4" cells at the suckling-to-weaning transition In this study, we used
single-cell transcriptomics to identify the maturation program induced by solid food ingestion in each cell
type of the intestinal epithelium of age-matched, suckling, male rabbit littermates fed or not with solid food.
In addition, analysis of the microbiota and metabolome allowed us to link the changes in luminal
environment induced by solid food ingestion with the gene expression regulation observed at the single-cell

level in the epithelium.
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Results

To evaluate the effects of solid food introduction on epithelial maturation, we determined single-cell
transcriptomic profiles of caecal epithelial cells isolated from four pairs of age-matched littermate suckling
rabbits ingesting or not solid food (Milk group: n = 4, Milk+Solid group: n = 4, Figure 1A). Growth and milk
intake were similar in the two groups (Figures 1B and C). In the Milk+Solid group, the small amount of solid

food ingested (< 25g/day/rabbit) increased dramatically the weight of the caecum (Figures 1D and E).

A single-cell atlas of the rabbit gut epithelium

After applying quality filters and removal of hematopoietic cells, the dataset included 13,805 caecal
epithelial cells. We identified 13 clusters of cells based on their transcriptome profiles. Each cluster was
assigned to a cell type based on expression of known markers of epithelial lineages (Figures 2A-D and Table

S1).

Stem cells (LGR5", 7% of epithelial cells) and transit amplifying (TA) cells (MKI67", TOP2A"*, UBE2C",
8.8% of epithelial cells) were predicted to be positioned at the crypt base (Figure 2, Figures 3A and B, Table
S1). Immunodetection of Ki67 (encoded by MKI67) confirmed that TA cells were localized at the crypt base
(Figure 3C). Stem and TA cells were predicted in the S and G2M cell cycle phases, respectively, while most
other epithelial cells were in the G1 phase (Figure 3D). Both stem and TA cells expressed high levels of
genes involved in DNA replication and translation (Figure 3E, Table S2). TA cells specifically expressed
genes related to mRNA processing and nuclear division (Figure 3E, Table S2). Absorptive cells (SLC51B")
were the main epithelial cell population and the distribution of their pseudo-times indicated three main
differentiation states that we termed as early (15.3% of epithelial cells), intermediate (30.9% of epithelial
cells) and mature (23.5% of epithelial cells) (Figures 2A-C, Figures 3A and F). Absorptive cell gene
expression profiles showed gradual modifications according to their differentiation states, which reflect their
maturation during migration along the crypt axis (Figure 2D). Indeed, early absorptive cells were predicted
to be localized at the lower part of crypts, while mature absorptive cells were positioned at the crypt-top

7
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(Figure 3B). Gene expression profile of early absorptive cells was transitional between stem/TA cells and
other absorptive cells (Figures 2B and D). Intermediate absorptive cells expressed high levels of genes
involved in antimicrobial defenses (e.g., S100A8, S100A12, DMBT1) and in mitochondrial metabolism
(Figure 2B and D, Figures 3E, Tables S1 and S2). Mature absorptive cells highly expressed genes involved
in epithelial digestion, transport, and glycocalyx formation (e.g., CAl, AQP8, ABCA1, APOB, ANPEP,
MUCI12) (Figures 2B and D, Table S1), and genes involved in lipid metabolism, response to hypoxia, and

antimicrobial defenses (Figure 3E and Table S2).

BEST4" cells (5% of epithelial cells), a recently discovered subset of mature absorptive epithelial cells, were
identified by the expression of the canonical markers BEST4, CA7, OTOP2, GUCA2B, GUCAZ2A, and CFTR
(Figures 2A-D, Figure 3A and Table S1). BEST4" cells were predicted to be distributed along the crypt axis
(Figure 3B). BEST4 mRNA in situ hybridization confirmed that BEST4" cells are relatively rare (< 4
BESTA4" cells per crypt) and distributed along the crypt axis (Figure 4A). Functions enriched in BEST4" cells
included “regulation of exocytosis” and “intracellular pH reduction” (Figure 3E and Table S2). Although the
morphological features of BEST4" cells are not defined yet, we observed rare electron dense absorptive cells
and cells with low density microvilli that may correspond to distinct subsets of absorptive epithelial cells
(Figures 4B and C). Dual mRNA in situ hybridization of CFTR and BEST4 confirmed that CFTR is
expressed by BEST4" cells in the rabbit caecum epithelium (Figure 2B, Figures 4D and E). CFTR mRNA
was also detected at the base of epithelial crypts, which is consistent with our scRNA-seq data showing the
expression of CFTR in stem cells, TA cells and early absorptive cells (Figure 2B, Figures 4D and E). Given
that CFTR expression was previously found to be restricted to BEST4" cells in the human small intestine °,
we analyzed the expression of BEST4" cell markers in tissue sections collected along the rabbit small and
large intestine. We found that the expression of BEST4, CA7 and OTOP2 was higher the in jejunum, ileum
and caecum than in the duodenum and colon (Figure 4F). CFTR expression did not mirror the expression of

BEST4" cell markers as CFTR expression was the highest in the duodenum mucosa (Figure 4G). The high
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expression of CA1 in the caecum and of AQP8 in the colon confirmed the expected patterns of regional gene

expression in the large intestine (Figure 4G).

Goblet cells (6.9% of epithelial cells) were identified by expression of known markers of this lineage and of
major components of mucus (SPINK4, REG4, FCGBP, WFDC2, AGR2, ZG16, TFF3) (Figures 2B-D,
Figure 3A and Table S1). Goblet cells were predicted to be distributed across the crypt axis (Figure 3B), and
we confirmed their localization by SPINK4 mRNA in situ hybridization (Figure 5A). Dual staining
confirmed that SPINK4 and BEST4 mRNA were expressed by distinct epithelial cells (Figure 5B). Genes
specifically expressed by goblet cells were involved in “glycosylation” and “Golgi organization” (Figure 3E
and Table S2), which reflects their role in the synthesis of mucins, also illustrated by goblet cells
morphological features (Figures 5C and D). Enteroendocrine cells (CHGA®, NEURODI1") specifically
expressed genes involved in the secretion of hormones (Figures 2B-D, Figure 3E, Tables S1 and S2). Two
subclusters of EEC were distinguished based on their repertoire of hormone-related genes. EEC CHGB"*
(2.2% of epithelial cells, enterochromaffin-like cells) expressed CHGB, TAC1, TTR, NMU, and TPH1
whereas EEC PYY" (0.4% of epithelial cells, L-like cells) expressed PYY, GCG, MLN, and CCK (Figures 2B
and D, Figure 3A and Table S1). Electron microscopy confirmed the presence of rare enteroendocrine cells

containing electron dense granules at the basal side (Figure 5E).

Other rare cell types described in the intestinal epithelium of other species (Tuft cells, Paneth cells, M cells)
were not found in our rabbit caecum epithelium scRNA-seq dataset. However, we observed at the base of
epithelial crypts a few Paneth-like cells containing electron dense apical granules, whose scarcity may
preclude their capture in droplets (Figure 5F). Automatic cell annotation based on human large intestine
scRNA-seq data was consistent with the manual assignment of cell types (Figure 5G). The mapping score
indicating the degree of similarity between rabbit and human cells was highest for stem cells, TA cells,
BEST4" cells, mature absorptive cells and for subsets of goblet and enteroendocrine cells, while the lowest
similarity was observed in intermediate absorptive cells (Figure 5H). All cell types were identified in each

9
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rabbit (Figure 5I). In sum, our analysis provided the first single-cell transcriptomic atlas of the rabbit
intestinal epithelium. We have made these gene expression data available as a searchable tool on the Broad
Institute Single-cell Portal

(https://singlecell.broadinstitute.org/single cell/study/SCP2662/single-cell-transcriptomics-in-caecum-

epithelial-cells-of-suckling-rabbits-with-or-without-access-to-solid-food#study-visualize).

Solid food introduction induced both global and cell type specific transcriptomic modifications in the
intestinal epithelium

After characterizing the cellular diversity of the rabbit intestinal epithelium, we focused our analysis on the
effects of solid food introduction on gene expression in each epithelial cell type. Ingestion of solid food
altered the transcriptome of absorptive cells, as suggested in the UMAP by the low overlap between
absorptive cells from suckling rabbits ingesting or not solid food (Figure 6A). Accordingly, the highest
number of differentially expressed genes (DEG) was found in intermediate and mature absorptive cells with
890 and 868 DEG, respectively (Figures 6B and D). Although to a lesser extent, solid food introduction also
modified the transcriptome in BEST4" cells (429 DEG), early absorptive cells (268 DEG), TA cells (209
DEG), goblet cells (198 DEG), stem cells (189 DEG), EEC PYY" (54 DEG), and EEC CHGB" (41 DEG)
(Figures 6B and D). These solid food-induced alterations of gene expression were observed despite the
proportion of epithelial cell types remaining similar in the two groups (Figure 6C). The proportion of mature
absorptive cells varied greatly between litters. Table S3 provides the list of DEGs for each cell type. Table S4
contains the results of the enrichment analysis using DEGs of each cell type. All the biological functions and

genes cited below were significantly modulated following the introduction of solid food (adjusted P < .05).

Most of the modifications of gene expression induced by the introduction of solid food were cell type
specific while other changes were shared between cell types (Figure 6D). Notably, mature absorptive cells
and BEST4" cells shared a high number of DEG (Figure 7A). Among transcriptomic modifications shared

between most cell types, solid food introduction induced a strong upregulation of ALDH1A1, encoding an

10
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enzyme involved in retinoic acid metabolism, and an upregulation of CA1l, a typical marker of epithelial
differentiation in the large intestine (Figures 7B-D). Solid food introduction also increased the gene
expression of the immunoglobulin transporter PIGR in several cell types, and this effect was much more
pronounced in cells located at the bottom of the crypts (Figures 7B and E). PIGR mRNA in situ hybridization
confirmed its predominant expression at the base of epithelial crypts (Figure 7F). The expression of PIGR
was also increased by solid food ingestion in a subset of goblet cells (Figures 7B and E). Indeed, 34% of
SPINK4" goblet cells expressed PIGR and this observation was supported by dual mRNA in situ
hybridization of SPINK4 and PIGR in some goblet cells localized at the base of crypts (Figures 7G-I).

Additionally, goblet cells were found to contain immunoglobulin A (IgA) (Figure 7J).

Among the cell type specific modifications, solid food ingestion reduced the gene expression of LRIGI, a
master regulator of the stem cell niche, exclusively in stem cells (Figure 7B). Conversely, ingestion of solid
food upregulated the gene expression of the transcellular water transporter AQP8, mostly in mature
absorptive cells (Figure 7B and Figure 8A). In BEST4" cells, solid food introduction increased the
expression of the pH-sensitive ion channel OTOP2, while it reduced the expression of the interleukin IL.33
(Figure 7B and Figures 8B and C). Overall, our results showed that the introduction of solid food induced
major transcriptomic modifications in the intestinal epithelium of suckling rabbits and these changes are
either shared across cell types or cell type specific. Accordingly, enrichment analyses revealed that solid

food ingestion altered specific functions in every epithelial cell type (Figure 8D and Table S4).

Solid food introduction remodels defense systems in the intestinal epithelium

Solid food introduction upregulated the expression of genes involved in detoxification in all cell types,
except EEC (e.g., GPX2, GSTO1, GSTP1, MGST1, MGST3, SOD1, TXN) (Figure 9A). This was particularly
marked in intermediate and mature absorptive cells, and in BEST4" cells. This finding is linked to the
enrichment of biological pathways related to “cellular aldehyde metabolic process”, “response to toxic

substance”, and “response to oxidative stress” in absorptive cells and in BEST4" cells (Figure 8D and Table

11
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S4). Solid food ingestion also increased the expression of interferon-stimulated genes (ISG), primarily in
mature absorptive cells and BEST4" cells (e.g., DHX58, OASL, IFIT3, IF135, IFI44L, IRF9, MX1, USP18,
RIGI) (Figure 9B), which is consistent with the specific enrichment of biological pathways such as
“response to virus” and “defense response to symbiont” in these cell types (Figure 8D and Table S4).
Conversely, solid food ingestion decreased the expression of several genes coding for regulators of innate
immune responses in absorptive cells (e.g., AREG, NFKBIA, NFKBIZ) (Figure 9C). This was associated
with a cell type-specific downregulation of genes coding for cytokines in BEST4" cells (CXCL9, IL13RA1,
IL33), which were also characterized by a specific enrichment of the biological pathway “negative
regulation of cytokine production” (Figure 8D and Table S4). Other cell type specific downregulations of
cytokine gene expression induced by solid food ingestion included IL1A in mature absorptive cells and
CCL25 in stem and early absorptive cells. In contrast, solid food introduction upregulated the expression of
other cytokines expressed by small subsets of absorptive and BEST4" cells (e.g., IL18, IL32, IL34) (Figure
9C). Solid food reduced the expression of some antimicrobial peptides in mature absorptive cells (DMBT1
and DEFBI1) and in goblet cells (WDFC2) while increasing the expression of numerous antimicrobial
proteins of the S100 family in several cell types (e.g., SI00A1, S100A12, S100A14, S100A6, S100G) (Figure
9D). Interestingly, genes coding for the two subunits of the inflammation marker calprotectin
(S100A8/S100A9) were upregulated, notably in subsets of stem and TA cells (Figure 9D). The increased
expression of calprotectin by epithelial cells after the ingestion of solid food was confirmed at the protein

level in an independent experiment (Figure 9E).

Solid food introduction also modulated the expression of numerous genes involved in epithelial
glycosylation, which plays a key role in host-microbiota interaction. Solid food decreased the expression of
several genes coding for glycosyltransferases mostly in stem, TA, early absorptive and goblet cells (e.g.,
GALNT13, GALNTI18 ST3GAL5, ST6GAL1, ST6GAL2) while BAGALT1 was upregulated in mature
absorptive and BEST4" cells (Figure 10A). In contrast, the introduction of solid food increased the
expression of genes coding for fucosyltransferases (FUT2 and FUT9) which are expressed by subsets of

12
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absorptive cells (Figure 10A). The introduction of solid food also altered the expression of genes related to
mucin production (Figure 10B). Specifically, solid food ingestion reduced the expression of genes encoding
the glycocalyx-forming transmembrane mucins MUC1 and MUC13 in intermediate and mature absorptive
cells, while enhancing MUC12 expression in BEST4" cells (Figure 10B). In goblet cells, the expression of
genes coding for major mucus components were upregulated (e.g., TFF1, TFF2, ZG16) or downregulated
(e.g., BCAS1, SYTL?) after the introduction of solid food (Figure 10B). Histological observations confirmed
that the number of goblet cells per crypt was similar in the caecal epithelium of rabbits ingesting or not solid
food (Figures 10C and D), which is consistent with the goblet cell proportion estimation obtained by scRNA-

seq (Figure 6C).

In order to determine whether changes in the expression of genes involved in epithelial defenses were linked
to modifications in the microbiota, we performed 16S rRNA gene sequencing in rabbit caecal contents
(Table S5). Solid food ingestion by suckling rabbits altered the composition of the microbiota, in particular
by increasing the abundance of the Lachnospiraceae family (14.6% in the Milk group versus 21.2% in the
Milk+Solid group). Altogether, our results show that the introduction of solid food triggered major
adaptations of epithelial defense systems in most cell types, which were associated with an alteration of the

microbiota composition.

Solid food introduction enhances differentiation in intestinal epithelial cells and alters nutrient
handling

As a next step, we evaluated how solid food ingestion altered the expression of genes related to epithelial
differentiation (Figure 10E) and renewal (Figure 10F). Key genes involved in stemness and proliferation
were upregulated (e.g., CDKN3, CKS1B, MKI67, OLFM4) or downregulated (e.g., CDK14, CELF2,
DACH1, LGR5, LRIG1) in stem cells after the introduction of solid food (Figure 10F). These changes at the
gene expression level were not associated with a modification of the crypt depth, which is partly determined
by epithelial proliferation rate (Figures 10C and G). In contrast, solid food ingestion strongly increased the

13
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expression of the differentiation markers PLAC8 and CA1 in most of epithelial cells (Figure 10E). Moreover,
the solid food induced upregulation of AQP8 in mature absorptive cells was associated with the enrichment
of the biological pathway “regulation of epithelial cell differentiation” (Figure 8D, Figure 10E and Table
S4). Conversely, in mature absorptive cells, solid food introduction downregulated the expression of
ANPEP, an enzyme involved in peptide digestion, which is a process usually occurring in the small intestine
(Figure 10E). Accordingly, automatic annotation of cell types identified a population of enterocyte-like cells

in the group of exclusively suckling rabbits (Figure 5G and Figure 6A).

These results suggesting a rewiring of absorptive cell functions after solid food introduction were associated
with the modulation of the expression of numerous genes involved in lipid handling and chylomicron
biogenesis, mostly in absorptive cells (Figure 11A). These genes were either downregulated (ABCAI,
APOB, PLIN2, VLDR) or upregulated (ACAT2, APOM, LDLR) (Figure 11A). Accordingly, absorptive cell
DEGs were enriched in functions related to “lipid transport”, “lipid homeostasis”, and “cholesterol
metabolic process” (Figure 8D and Table S4). Moreover, solid food ingestion increased the expression of
several bile acid transporters, such as FABP7 that was upregulated in most cell types, FABP6 that was
specifically upregulated in BEST4" cells, and SLC51A and SLC51B that were mostly upregulated in
absorptive cells (Figures 11A and B). These alterations of the expression of lipid processing genes were
coupled with an important decrease in the plasmatic concentration of cholesterol and LDL after solid food

introduction (Figure 11D).

In addition, the introduction of solid food altered the expression of numerous genes coding for solute carriers
(SLC) (Figure 11B). Ingestion of solid food strongly upregulated the expression of genes coding for the urea
transporter SLC14A2 and several ion transporters (e.g., SLC11A2, SLC22A18, SLC26A3, SLC39A4) in
absorptive cells (Figure 11B). The upregulation of the urea transporter coincided with a significant decrease
in plasma urea concentration following the introduction of solid food (Figure 11D). Solid food ingestion also
specifically upregulated the ion transporter SCL12A7 in BEST4" cells and the fucose transporter SLC35C1
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in goblet cells. The introduction of solid food altered the expression of monocarboxylic acid transporters
with an upregulation of SLC16A9 in mature absorptive cells, a downregulation of SLC16A3 in BEST4" cells
and a downregulation of SLC16A7 in early absorptive cells (Figure 11B). This result can be linked to the
increased concentrations of the bacterial short chain fatty acids acetate and butyrate in the caecum content
after the introduction of solid food (Figure 11E). Similarly, the lower concentration of amino acids
(glutamate, methionine, and tyrosine) following solid food introduction can be associated with the
upregulation (SLC38A3) and downregulation (SLC38A2, SLC6A14, SLC7A1) of amino acids transporters in

absorptive cells (Figures 11B and E).

The solid food-induced alterations of nutrient handling were associated with modifications of gene
expression in EEC (Figure 11C). In EEC PYY" cells, solid food introduction upregulated the expression of
genes coding for the hormones GHRL, MDK, MLN, SST, PPY, and TACI, while only NTS was
downregulated. In EEC CHGB', solid food ingestion increased the expression of the hormone coding gene
NMU, while TTR was downregulated (Figure 11C). These observations are reflected by the EEC-specific
enrichment of DEG involved in the biological pathway “digestion” (Figure 8D and Table S4). In addition,
genes coding for the hormones involved in the guanylate cyclase C signaling (GUGA2A and GUCA2B) were
upregulated in goblet cells, mature absorptive cells and BEST4" cells (Figure 11C). Overall, our results show
that solid food ingestion enhances epithelial differentiation and remodels the sensing, transport and

metabolism of nutrients by epithelial cells.

Solid food-induced changes in gene expression are partly replicated by butyrate in caecum organoids
We hypothesized that the solid food-induced increased production of butyrate by the gut microbiota (Figure
11E) may contribute to the transcriptomic changes observed in the caecum epithelium, as this bacterial
metabolite is able to regulate gene expression in host cells ***!. We therefore analyzed gene expression in
rabbit caecum organoid cell monolayers treated or not with 5 mM butyrate on the apical side for 2 days
(Figure 12A). Butyrate upregulated the gene expression of the differentiation markers CA2 and AQP8
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(Figure 12B), which were also upregulated in vivo after the introduction of solid food in BEST4" cells and in
absorptive cells, respectively (Figure 10E). Butyrate also tended to increase the expression of CA1, which
was upregulated in most cell types in vivo after solid food ingestion (Figure 10E and Figure 12B). In
contrast, the upregulation of PLAC8 observed in vivo in most cell types was not reproduced by butyrate,
which decreased the expression of this gene in vitro (Figure 10E and Figure 12B). Butyrate strongly
upregulated the ISG OASL (Figure 12C), which mirrored the effect of solid food ingestion in absorptive
cells, BEST4" cells and goblet cells (Figure 9B). In contrast, butyrate had no effect on the expression of
RIGI, ALDH1A1 and DMBT1, which were up or downregulated in vivo. The expression of the bile acid
transporter SLC51B was reduced by butyrate in organoid cell monolayers (Figure 12C), whereas the
opposite was observed in absorptive cells and BEST4" cells after the introduction of solid food in vivo
(Figure 11B). Butyrate downregulated the expression of the progenitor cell markers SOX9 and HES1 (Figure
12D), reflecting the in vivo effect of solid food ingestion (Figure 10F). In addition, butyrate reduced the
expression of CFTR and PIGR (Figure 12D), an effect that could be attributed to a reduction in
stem/progenitor cells that highly express these genes in vivo (Figure 2B and 7E). Taken together, the
butyrate-induced changes in gene expression in organoid cell monolayers suggest that the increased
production of this bacterial metabolite after solid food ingestion may contribute to some, but not all, of the

transcriptomic changes observed in vivo.
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Discussion

Our study provides the first single-cell transcriptomic atlas of the rabbit intestinal epithelium. This dataset
expands the characterization of the cellular diversity of the intestinal epithelium in mammals and constitutes
an important resource for the use of rabbits as a model in gastrointestinal research. Our results notably
highlighted the diversity of absorptive epithelial cells in the caecum. Indeed, we observed a functional

specialization of absorptive cell subsets along the caecal crypt axis that mirrored previous findings in the

small intestine villi of mice and humans ®’. For instance, our results showing that middle-crypt absorptive
cells specifically express genes coding for antimicrobial peptides is consistent with the observation made in
bottom villus enterocytes ®’. Another important finding of our study is the high homology between rabbit
and human BEST4" cells, which indicates that the rabbit is an appropriate animal model to study the role of
this subset of mature absorptive cells that are absent in mice . Our results indicating that rabbit BEST4" cells
are mainly localized in the jejunum, ileum and caecum are consistent with studies performed in humans °.
However, the expression of the CI/HCOs channel CFTR in BEST4" cells in the rabbit caecum epithelium
was unexpected as CFTR expression was previously considered to be restricted to BEST4" cells localized in
the human small intestine >**. The expression of CFTR in BEST4" cells in the large intestine may have
important implications to understand epithelial fluid efflux, regulation of mucus viscosity, and for the

management of cystic fibrosis or diarrheal disease ***.

Additionally, the two subsets of EEC that we identified in the rabbit caecum (EEC PYY", corresponding to
L-cells expressing GCG and PYY; EEC CHGB’, corresponding to enterochromaffin cells expressing TPH1)
were highly similar to human EEC, notably because EEC from both species express the hormones MLN,
MDK, and PPY, which are not expressed by mouse EEC *'°. The absence of M cells in our caecal epithelium
dataset was expected as this cell type is known to be present mostly in the small intestine follicle-associated
epithelium >%. The lack of Paneth and tuft cells in our single-cell survey could be explained by their scarcity
in the large intestine, which reduces their probability of capture by droplets in the microfluidic system *°.
Indeed, our electron microscopy observations revealed a rare population of Paneth-like cells in rabbit caecal
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epithelial crypts, confirming previous reports *. Sequencing of a larger number of cells and/or analyzing
other gut segments would be required to characterize the transcriptome of these rare epithelial cell types in

the rabbit model.

The maturation of the mammalian intestinal epithelium at the suckling-to-weaning transition is considered
to be largely driven by genetically wired factors while the contribution of nutritional and microbial signals
remains debated ''*?**, Our results clearly demonstrate that the introduction of solid food is sufficient to
induce major transcriptome modifications in every intestinal epithelial cell type, independently of age-
related factors. Importantly, we observed this strong epithelial response to solid food despite the level of
milk intake remaining unchanged, which indicates that the loss of milk-derived factors is not mandatory to
induce epithelial maturation. Several previous mouse studies described the transcriptomic changes occurring
in the intestinal epithelium at the suckling-to-weaning transition ***’ but, to our knowledge, our study is the
first to reveal in which cell types these modifications take place. For instance, we newly demonstrated that
the up-regulation of the immunoglobulin transporter PIGR at the onset of solid food ingestion previously

described in mice and rabbits 2+?73®

mainly occurs in epithelial cells localized at the crypt base (stem cells,
TA cells, and early absorptive cells). This zonated expression of PIGR in crypt base cells that we confirmed
by RNA in situ hybridization could be explained by the proximity with the underlying IgA secreting plasma
cells. IgA secretion by crypt base cells could contribute to protect the stem cell niche from microorganisms.
In line with our findings, the compartmentalization of PIGR expression in the mouse and human intestinal
epithelium was recently demonstrated to be driven by BMP signaling, which increases from the crypt base to
the top ’. Interestingly, we also observed an upregulation of PIGR expression in a subset of goblet cells after
the ingestion of solid food, which suggests that transepithelial transport of IgA could be an unexplored
function of mucus secreting cells. The presence of IgA in rabbit caecal goblet cells, as observed previously
in the intestine of birds *, could be explained by the binding of IgA to mucins or their transport through
goblet cell-mediated passage “°. Future research is required to explore the potential contribution of goblet

cells to IgA transport across the intestinal epithelium.
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Although our results indicate that most transcriptome changes induced by solid food ingestion are cell type-
specific, we also found a few genes similarly regulated in most epithelial cell types. A striking example is the
pan-epithelial upregulation of ALDH1A1, which is involved in epithelial processing of dietary vitamin A
into retinoic acid *. Epithelial retinoic acid metabolism was previously shown to be upregulated at the
weaning transition in the mouse intestine ** and is known to be influenced by the gut microbiota *, notably
through the bacterial metabolite butyrate, which was shown to induce ALDH1A1 expression in human and
mouse small intestinal 3D organoids *. In contrast, we found that butyrate did not change the expression of
ALDHI1AL1 in rabbit caecum organoid cell monolayers, potentially due to differences in culture format, gut
segment or species. Given the role of retinoic acid in tuning intestinal immune responses *, our results
suggest that epithelial regulation of vitamin A metabolism at the onset of solid food ingestion may contribute
to the “weaning reaction”, which corresponds to a transient remodeling of mucosal immunity essential to
program mucosal health *. In our study focusing on the epithelial layer, we found that a prominent feature of
this “weaning reaction” was the strong upregulation of ISG, which was previously shown to be a microbiota-
dependent process ¥’. Our study newly shows that this solid food induced upregulation of ISG is mostly
restricted to crypt-top mature absorptive cells and to BEST4" cells. This observation is in line with previous
studies in mice showing that microbial colonization induced the upregulation of ISG specifically in subsets
of mature absorptive cells localized at the tip of epithelial villi in the small intestine *“>“°. The solid food
induced upregulation of ISG coincided with an increased concentration of butyrate and a higher abundance
of the butyrate-producing family Lachnospiraceae *, which is probably driven by the introduction of plant-
based complex carbohydrates. Accordingly, we found that butyrate strongly increased the expression of the
ISG OASL in cell monolayers derived from rabbit caecum organoids, which is in agreement with a previous
study in chicken cells ¥. In contrast with the upregulation of ISG, we found that solid food ingestion reduced
the expression of numerous cytokines and antimicrobial peptides in a cell type specific manner, indicating an
overall remodeling of epithelial defense systems. For instance, our data revealed that BEST4" cells are the
main producers of the immunomodulating IL33 alarmin *°, which is downregulated after ingestion of solid
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food. We also confirmed the goblet cell-specific expression of the recently discovered antimicrobial peptide

WFEFDC2 " and we newly report its downregulation after the introduction of solid food.

Our results showing that solid food ingestion alters the gene expression of membrane mucins (MUCI,
MUCI12, MUC13), specifically in absorptive and BEST4", cells highlight the cell types involved in the
establishment of the glycocalyx, which was previously shown in mice to be part of an adaptation of the
epithelial defense repertoire during weaning “*. In addition, we found that several glycosyltransferases
involved in the post-translational modification of mucins were regulated by the introduction of solid food
predominantly in stem cells and proliferating cells located at the crypt-base. This effect may be driven by the
changes in the gut microbiota induced by solid food ingestion since a previous study showed that microbial
colonization of the mouse intestine similarly changed glycosylation in stem and transit-amplifying cells *°.
The mature absorptive cell-specific upregulation of the fucosyltransferase FUTZ2 induced by the ingestion of
solid food could also be driven by microbial signals but also by changes in glucocorticoid levels at the
weaning transition, as previously demonstrated in mice °"**. The solid food induced upregulation of mucus
components secreted by goblet cells (ZG16, TFF2) could contribute to protect the intestinal epithelium from

microorganisms expanding in the gut at the weaning transition.

The remodeling of epithelial defense systems induced by the introduction of solid food coincided with a shift
of the transcriptome of caecal epithelial cells characterized by a reduced expression of small intestine-
specific genes (ANPEP, APOB) and a higher expression of large intestine-specific genes (AQP8, CAl,
SLC26A3) °. The changes in the gut microbiota induced by solid food ingestion could contribute to the
acquisition of these large intestine-specific functions since microbial colonization of the rat intestine was
previously shown to induce similar effects **. Our experiments in cell monolayers derived from rabbit
caecum organoids suggest that the increased production of butyrate by the gut microbiota after the onset of
solid food ingestion could contribute to epithelial differentiation. The regional specialization of epithelial

cells upon solid food introduction was associated with a strong shift in amino acid and lipid metabolism.
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Indeed, solid food introduction altered the absorptive cell expression of transporters of amino acids whose
concentration was reduced in the lumen. Increased utilization of milk-derived amino acids by the microbiota
for bacterial growth could lower their availability **, which could explain the lower urea concentration in the
plasma and the increased expression of its transporter (SLC14A2) in absorptive cells after the introduction of
solid food. The effects of solid food ingestion on the expression of lipid handling genes in absorptive cells
could also be driven by changes in the gut microbiota, which has previously been shown to regulate lipid
homeostasis in the intestinal epithelium during the weaning transition in mice *. Indeed, metabolites
produced by the gut microbiota in early life regulate lipid metabolism in epithelial cells *>*°. In contrast,
changes in dietary lipid supply can be ruled out, as lipids are mainly derived from maternal milk *’, the
amount of which was not reduced after the introduction of solid food. Changes in the gut microbiota
triggered by solid food ingestion could also contribute to the upregulation of basolateral bile acid exporters
(OSTao/f coded by SCL51A/B genes) in absorptive cells and to the reduction of the plasmatic concentration
of cholesterol, the precursor of bile acids *°**°. In turn, solid food-induced modification of bile acid
metabolism could contribute to the maturation of the microbiota, as demonstrated in mice at the suckling-to-
weaning transition . Interestingly, we found that the cytosolic bile acid binding protein (FABP6) was
specifically expressed and upregulated in BEST4" cells after solid food ingestion, which suggests an

uncovered role for these cells in the enterohepatic circulation ®.

Our study is focused on epithelial cells, whereas major changes are known to occur in intestinal immune
cells during the weaning transition, as demonstrated in mice **. Our initial sScRNA-seq dataset included some
intraepithelial lymphocytes but their numbers were insufficient to perform reliable analyses. Future studies
analyzing the single-cell transcriptome of lamina propria immune cells in our suckling rabbit model
ingesting or not solid food are needed to expand our understanding of the gut barrier maturation during the
weaning transition. Indeed, the transcriptome changes that we observed in intestinal epithelial cells after
solid food ingestion suggest alterations in the crosstalk with immune cells, particularly in relation to
interferon and cytokine signaling. Another limitation of our study is related to its restriction to epithelial cells
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isolated from the cecum, which we chose because this large intestine region harbors a dense microbial
population that is highly responsive to dietary changes at the suckling-to-weaning transition **. Additional
studies examining single-cell transcriptome changes induced by solid food ingestion in other regions of the
gut, such as the jejunum, may also be relevant to explore metabolic and immune modulations. Furthermore,
previous mouse studies have shown that microbiota changes are directly involved in epithelial bulk

transcriptome modifications at the weaning transition %

, while our study performed at the single-cell level
did not evaluate this causal role. The recent development of intestinal organoids that recapitulate the cellular
diversity of the epithelium in vitro, including in rabbits ®, will be useful in future scRNA-seq studies aiming
at evaluating the cell type specific transcriptome changes induced by gut bacteria or metabolites modified at
the weaning transition. Although we are not aware of sex differences in gut maturation, our results should
also be confirmed in females, as all experiments were performed in male rabbits only in order to reduce inter-
individual variability because of the small sample size (n=4/group). Due to differences in weaning patterns

and dietary intake between humans and rabbits, extrapolation of our results to human intestinal development

should be made with caution.

Conclusion

In conclusion, our study provides the first single-cell transcriptomic atlas of the rabbit intestinal epithelium
and significantly expands the understanding of cellular diversity in the mammalian intestine. We highlighted
the homology between rabbit and human intestinal epithelial cells, such as BEST4" cells, supporting the
suitability of the rabbit as a model for gastrointestinal research. In addition, we uncovered cell type specific
transcriptome modifications driven by solid food ingestion at the suckling-to-weaning transition,
highlighting changes in epithelial defense mechanisms and metabolic processes. Our organoid experiments
suggest that the increased production of butyrate by the gut microbiota after the onset of solid food ingestion
may contribute to epithelial maturation. These findings contribute to a broader understanding of the

postnatal maturation of the gut barrier in mammals. Further studies are required to examine the functional
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and long-term consequences of the transcriptomic changes induced by the ingestion of solid food in each

epithelial cell type.
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Material and methods

Animal experiments

The experiments were performed at the PECTOUL experimental facility (GenPhySE, INRAE, Toulouse,
France). The handling of rabbits followed the recommendations outlined by the European Union's
regulations for the protection of animals used in scientific research (2010/63/EU), and was consistent with
the French legislation (NOR: AGRG1238753A 2013). This project received approval from the local ethics
committee “Comité d’éthique en expérimentation animale SCIENCE ET SANTE ANIMALES” N°115
(SSA_2022_012 and SSA_2024_004V2). Multiparous dams (n = 4) were housed individually in wire cages
(61 x 68 x 50 cm) equipped with a closed nest (39 x 27 x 50 cm). The litter size was limited to 10 pups per
litter. From postnatal day (PND) 4, pups were placed in a new cage, adjacent to their mother’s cage. At
PND12, litter sizes were reduced to 6 pups in order to maximize milk ingestion. Pups from each litter were
separated in 2 cages on either side of their mother’s cage (3 pups/cage) to form two groups (Figure 1A). In
the first group (Milk), the pups were exclusively suckling. In the second group (Milk+Solid), the pups were
suckling while having ad libitum access to commercial solid food pellets (StabiGreen, Terrya). During the
whole experiment, the dam and the pups were placed once a day for 5-10 minutes in the nest of the dam’s
cage for suckling before returning to their respective cages. Coprophagia was prevented by removing feces
dropped by the mother in the nest after each suckling. Individual milk intake was quantified daily (from
PND12 onwards) by weighing pups before and after suckling. Solid feed intake was measured daily at the
cage level (3 pups) by weighing the feeder. The experiment was repeated a second time independently with n
= 6 litters in order to collect samples for qPCR analysis, RNA in situ hybridization, immunohistochemistry,
electron microscopy and calprotectin measurements. All other measurements were performed on samples

collected during the first experiment.

Sample collection
One male pup per litter and per group (Milk or Milk+Solid) was sacrificed after suckling at PND24 or
PND25 by electronarcosis followed by exsanguination (Figure 1A). In the first experiment with 4 litters, the
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samples were collected from n=4 pups from the Milk group and n=4 pups from the Milk+Solid group. In the
second experiment with 6 litters, the samples were collected from n=6 pups from the Milk group and n=6
pups from the Milk+Solid group. Due to the small sample size, the experiment was performed in males only
in order to reduce the potential sex-related variability. Blood collected in EDTA tubes was centrifuged (1000
x g, 10 min, 4°C) and plasma was stored at -20°C. The caecum with its content and appendix was isolated
and weighed. The content of the caecum was collected and kept at -80°C until microbiota and metabolome
analysis. A fragment of caecal tissue was collected and placed in cold PBS without Ca®*/Mg**
(ThermoFisher scientific, cat#10010-015) for epithelial cell isolation. Other sections of caecal tissue were
fixed in i) Carnoy solution (60% ethanol, 30% chloroform, 10% glacial acetic acid) for 3 hours before
transfer in 70% ethanol (samples used for Alcian Blue and Periodic Acid of Schiff staining), or in ii) 10%
neutral-buffered formalin for 24 hours before transfer in 70% ethanol (samples used for
immunohistochemistry and RNA in situ hybridization), or in iii) 0.1 M Sorensen phosphate buffer (pH 7.4)
with 2% glutaraldehyde at 4°C (samples used for electron microscopy). Sections of the duodenum, jejunum,
ileum, caecum and colon were snapped frozen in liquid nitrogen and stored at -80°C until gPCR gene

expression analysis.

Caecal epithelial cell isolation

Caecal tissue was opened longitudinally and washed with cold PBS to remove all content. The tissue was
minced into 1 cm?” sections and washed with cold PBS. Tissue segments were transferred to 5 mL of a pre-
warmed (37°C) digestion solution prepared in HBSS without Ca*/Mg* (ThermoFisher Scientific,
cat#14175095) and supplemented with 5 mM EDTA (ThermoFisher Scientific, catFAM9260G) and 1 mM
DTT (Sigma, cat# 10197777001). After incubation (20 minutes at 37°C under slow agitation at 15 rpm),
epithelial crypts were detached by vigorous manual shaking for one minute. The crypt solution was then
filtered (100 pm) before centrifugation (300 x g for 5 minutes at 4°C). The crypt pellet was resuspended in
10 mL of pre-warmed dissociation solution containing TrypLE (ThermoFisher, cat# 1205036)
supplemented with 1 mg/mL DNAse I (Sigma, cat # 10104159001), 5 mM MgCl, (Sigma, cat# M1028), 10

25



588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

51
52

M Y27632 (StemCell Technologies, cat# 72304) and the solution was distributed in two 50 mL conical
tubes (5 mL/tube). Cells were incubated for 10 minutes at 37°C under gentle agitation at 15 rpm before
homogenization by vortexing (3 seconds). This step was repeated and followed by two successive filtrations
(70 pm and 40 pm). Digestion was stopped by adding 45 mL of cold PBS to the cells. After centrifugation
(300 x g for 5 minutes at 4°C), the cells were resuspended in 5 mL FACS buffer (PBS supplemented with 3%
fetal bovine serum [ThermoFisher Scientific, cat#10270-106], 2 mM EDTA, and 10 ptM Y27632). Cell
concentration was measured using an automated cell counter Countess 3 (ThermoFisher Scientific,

catAAMQAX2000).

Cell preparation for single-cell sequencing

Cells (2x10°) were centrifuged (300 x g for 5 minutes at 4°C) and resuspended in 1 mL of PBS supplemented
with 10 pM Y27632. This step was repeated twice. Dead cells were stained with the LIVE/DEAD™ Fixable
Violet Dead Cell Stain Kit (ThermoFisher Scientific, cat#1.34963), according to the manufacturer’s
instructions. After 30 minutes of incubation (4°C, protected from light), cells were centrifuged (300 x g for 5
minutes at 4°C) and resuspended in 1 mL FACS buffer. This step was repeated once. Cells were filtered (40
pM) and sorted (10° live and single-cells) in a 1.5 mL tube containing 10 pL of PBS supplemented with 10
BM Y27632 by using a BD Influx cell sorter instrument with a 100 pm nozzle, under 20 psi at the I2MC
Cytometry and Cell sorting TRI platform (Toulouse, France). After centrifugation (300 x g for 5 minutes at
4°QC), cells were resuspended in 100 pL. PBS, counted manually and their viability was verified by trypan

blue staining.

Single-cell sequencing

For single-cell RNA-sequencing, approximately 10,000 cells per sample were used for encapsulation into
droplets using Chromium Next GEM Single-cell 3' Reagent Kits v3.1 according to manufacturer’s protocol
(10x Genomics CG000315 Rev E user guide). Briefly, after generation of Gel bead-in-EMulsions (GEMs)

using Next GEM Chip G, GEMs were reverse transcribed in a C1000 Touch Thermal Cycler (BioRad)
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programmed at 53°C for 45 min, 85°C for 5 min, and held at 4°C. After reverse transcription, single-cell
droplets were broken and cDNA was isolated and cleaned with Cleanup Mix containing DynaBeads
(ThermoFisher Scientific). cDNA was then amplified with a C1000 Touch Thermal Cycler programmed at
98°C for 3 min, 12 cycles of (98°C for 15 s, 63°C for 20 s, 72°C for 1 min), 72°C for 1 min, and held at 4°C.
Subsequently, approximately 250 ng of amplified cDNA was fragmented, end-repaired, A-tailed, index
adaptor ligated, and cleaned with cleanup mix containing SPRIselect Reagent Kit (Beckman Coulter, cat#
B23317) in between steps. Post-ligation product was amplified and indexed with a C1000 Touch Thermal
Cycler programmed at 98°C for 45 s, 11 cycles of (98°C for 20 s, 54°C for 30 s, 72°C for 20 s), 72°C for 1
min, and held at 4°C. The sequencing-ready libraries were cleaned up with SPRIselect beads. 10x libraries
were pooled and charged with 1% PhiX on one S1 lane of the NovaSeq 6000 instrument (Illumina) using the
NovaSeq 6000 S1 Reagent Kit v1.5 (100 cycles), and the following sequencing parameters: 28 bp read 1 —

10 bp index 1 (i7) — 10 bp index 1 (i5) — 150 bp read 2. The S1 lane generated a total of 810x10° raw reads.

ScRNA-seq pre-processing, filtering, normalization and clustering

Cell Ranger Software (version 7.1.0, 10x Genomics) was used to align and quantify raw sequencing data
using the rabbit reference genome (GCF_009806435.1_UM_NZW_1.0). A custom reference file was
created using the Cell Ranger mkgtf command with “--attribute=gene_biotype:protein_coding and --
attribute=gene_biotype:IncRNA” parameters. The Cell Ranger mkref and count commands were used with

default parameters.

Using R software (version 4.2.1), the Seurat (version 4.3.0) pipeline ® was run for data preprocessing and
analysis. SeuratObjects were generated for each rabbit (n=8) and merged. Cells with less than 1,600 or more
than 55,000 expressed genes were filtered out (Figures 13A-E). Similarly, cells with a number of counts
below 1,500, with a percentage of mitochondrial RNA above 25% or expressing more than 0.1% of counts
from hematopoietic cell genes (CD44, PTPRC, CD48) were filtered out. The resulting data were normalized
via the NormalizeData function of Seurat, with the LogNormalize method. The top 2,000 variable features
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were then extracted (based on a mean-variance trend as implemented in the FindVariableFeatures function
of Seurat). After scaling data to unit variance, dimensionality reduction was carried out with Principal
Components Analysis (50 PCs). Cell clustering was performed based on retained PCs and using the Leiden
algorithm on a cell similarity graph, with a 0.5 resolution. Finally, clusters were visualized using the non-
linear reduction dimensionality Uniform Manifold Approximation and Projection (UMAP) performed on

PCA reduction (30 PCs) (Figure 13F).

Cell type assignment

Marker genes

The marker gene list for each cluster was obtained using a Wilcoxon test as implemented in the Seurat
function FindMarkers (Figure 13G). A gene was declared a marker if its adjusted P < .05 (Bonferroni
correction for multiple testing). The test results were further filtered to ensure a minimum log2-fold Change
(logFC) of 0.25 between the tested cluster and the others. Only genes expressed in at least 25% of cells and
over-expressed in the tested cluster (compared to the others) were considered for this analysis. Cell types
were then manually assigned to clusters according to found markers, based on a comparison with known cell

type markers >'%64%5,

Assessment of cluster validity with cell cycle score and crypt axis gene score

The cell cycle score was used to assign phases of the cell cycle to individual cells and assess the consistency
between manually assigned cell types and expected cell cycle phase. The cell cycle score was computed with
the Seurat function CellCycleScoring. In addition, the crypt axis gene (CAG) score of each cell was
calculated via the AddModulesScore function by averaging the expression of genes previously defined as
expressed in epithelial cells located at the crypt top (PLAC8, CEACAM1, TSPAN1, DHRS9, RHOC, PKIB,

HPGD) ™.

Pseudo-time analysis
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Considering that absorptive cell (AC) subsets are distinguishable from each other based on their
differentiation states, we used a pseudo-time analysis to create AC sub-groups with the monocle3 package
(version 3.1). The trajectory of cell types was obtained using the learn_graph function on the previously
generated UMAP and the pseudo-time of each cluster was calculated based on their projection on the
trajectory using the order_cells function. The trajectory root was set to be the stem cell cluster.
Subsequently, three cell subgroups of AC were delineated based on the pseudo-time distribution, which was
found to be trimodal: cells with a pseudo-time below 2.0 were classified as “Early AC”, those with a pseudo-
time between 2.0 and 8.6 were classified as “Intermediate AC”, and cells with a pseudo-time above 8.6 were
classified as “Mature AC” (Figures 14A and B). Marker extraction was performed for each assigned cell
type, similarly to what was performed for cluster markers and as described in the “Marker genes” section

(Table S1).

Automatic assignation of cell types

To validate our manual annotation, we performed an automatic annotation based on the transfer of labels of a
reference to the rabbit caecum epithelial cells . Human epithelial cells from the large intestine * were used
as a reference. First, a PCA was performed on the reference dataset to reduce its dimension to the first 30
PCs. Then, FindTransferAnchors was used to find similar cells between the rabbit and human datasets,
called “anchors”. These anchors were then used by the MapQuery function to map the rabbit caecum
epithelial cells onto the human epithelial cell space. The reference annotation was then transferred from the
reference to the rabbit data and visualized on the UMAP. The results of MapQuery were also used in the
MappingScore function to attribute a score to each rabbit cell. Roughly, this score measures how a cell
neighborhood is affected by a mapping to and then back from the reference (a higher score corresponds to a

more similar neighborhood).

Biological pathways enrichment
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Biological enrichment analysis was performed on marker genes of the cell types using the enrichGO

function from the clusterProfiler (version 4.6.1) package

, with all expressed genes as the reference
background (Table S2). The enrichment analysis was carried out using the Homo sapiens database because
of the absence of an Oryctolagus cuniculus database. Redundancy of results was reduced by using the
simplify function from the clusterProfiler package. Terms with a semantic similarity over 0.7 were deleted
and only representative terms (terms with the smallest P-value) were kept within each group of term. P-

values were corrected for multiple testing using the Benjamini-Hochberg (BH) procedure ® and pathways

were considered enriched if their corresponding adjusted P-value was < 0.05.

Differential analysis of gene expression

The pseudo-counts data were derived by summing the counts of each gene across cells of the same type for
each rabbit. This step is considered essential as it has been shown that performing the differential analysis on
pseudo-bulk data yields more robust results, reducing the risk of Type I errors compared to analyzing
scRNA-seq data directly **”°. The whole analysis was performed independently in each cell type. Pseudo-
counts were normalized using the “TMM?” method of edgeR ”*. A PCA was conducted on log2-transformed
pseudo-counts for quality control, revealing a possible important impact of the litter on gene expression
(Figure 14C). This was thus accounted for in the differential analysis. Differential expression analysis was
performed using a Negative Binomial generalized linear model as implemented in edgeR. More precisely,
each gene expression was modeled with an additive effect of both the group and the litter, the latter being
used as a blocking variable. P-values were obtained with a log-likelihood ratio (LR) test of the group effect.
Adjusted P-values were obtained with the BH procedure and genes were considered differentially expressed
if their corresponding adjusted P-value was < 0.05 (Table S3). Differentially expressed genes were subjected

to an enrichment analysis as described in the “Biological pathways enrichment” section (Table S4).

Microbiota composition
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The microbiota composition was analyzed as described previously *. Briefly, DNA was extracted from 50
mg of caecal content with the Quick-DNA Fecal/Soil Microbe DNA Miniprep Kit (Zymo Research,
cat#D6010). The V3-V4 region of the 16S gene was amplified by PCR and amplicons were sequenced by
MiSeq Illumina Sequencing. Bioinformatic analyses were performed with the FROGS pipeline (v.4.0.1)
according to the guidelines "*. Taxa representing more than 0.5% of the relative abundance in at least one
group were considered for analysis (Table S5), as it was previously shown that taxa below this threshold

were not accurately quantified ™.

Metabolomics

The metabolome was analyzed in 50 mg of caecal content by using nuclear magnetic resonance (NMR)-
based metabolomics, at the MetaboHUBMetaToul-AXIOM metabolomics platform (GenotToul, Toulouse,
France), as described previously **. The relative concentration of each metabolite was expressed relatively to

the mean concentration measured in the Milk group.

Plasma biochemistry
The Clinical Chemistry Analyzer Pentra C400 (Horiba medical) was used at the Anexplo Phenotyping
platform (GenoToul, Toulouse) to measure plasmatic concentrations of cholesterol, high density lipoprotein

(HDL), low density lipoprotein (LDL), glucose, triglycerides, free fatty acids and urea.

Calprotectin assay

Caecal epithelial cells isolated as described above were lysed in RIPA buffer (ThermoFisher Scientific,
cat#89901) supplemented with cOmplete protease inhibitor cocktail (Roche, cat#11697498001) by using
stainless steel beads and a TissueLyser II (Qiagen) operating at 30 Hz for 3 min. Lysates were centrifuged
(12000 x g, 10 min, 4°C) and stored at -80°C until analysis. Calprotectin was quantified in undiluted
epithelial cell lysates by using a rabbit-specific ELISA kit (Clinisciences, cat# MBS2601529-48), following
the manufacturer instructions. Protein concentration in epithelial cell lysates diluted 1:2 (v/v) in NaCl 0.9%
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was measured with Pierce Bradford Plus Protein Assay Kits (ThermoFisher Scientific, cat#23236).

Calprotectin concentration was normalized to the protein level of each sample.

Histology

Transversal sections of cecal tissue with luminal content fixed in Carnoy’s solution were embedded in
paraffin and stained by Alcian Blue and Periodic Acid of Schiff at the histology platform Anexplo
(GenoToul, Toulouse, France). Slides were digitalized before measurement of the crypt depth and of the
number of goblet cells per crypt with the CaseViewer 2.3 software (3DHISTECH). Formalin-fixed, paraffin-
embeded (FFPE) transversal sections of cecal tissues were cut into 4 pm sections and adhered to Superfrost-
Plus charged microscope slides (Thermo Fisher Scientific) before being used for RNA in situ hybridization

and immunohistochemical staining.

RNA in situ hybridization

The RNAscope 2.5 HD Reagent Kit — RED (Advanced Cell Diagnostics, cat#322350) and the RNAscope
Multiplex Fluorescent Reagent Kit v2 (Advanced Cell Diagnostics, cat#323100) were used with rabbit
custom probes targeting SPINK4 (Advanced Cell Diagnostics, cat#1564251-C1, RNAscope™ Probe- Oc-
SPINK4-C1 or cat#1564251-C2, RNAscope™ Probe- Oc-SPINK4-C2) or BEST4 (Advanced Cell
Diagnostics, cat#1564261-C1, RNAscope™ Probe- Oc-BEST4-C1) or PIGR (Advanced Cell Diagnostics,
cat#1003001-C1, RNAscope™ Probe- Oc-PIGR-C1) or CFTR (Advanced Cell Diagnostics, cat#497241-
C2, RNAscope™ Probe- Oc-CFTR-C2). Negative and positive control slides were respectively hybridized
with the RNAscope™ Negative Control Probe- DapB (Advanced Cell Diagnostics, cat#310043) and
RNAscope™ Probe- Oc-GAPDH-No-XHs (Advanced Cell Diagnostics, cat# 469461) or RNNAscope™

Probe- Oc-POLR2A (Advanced Cell Diagnostics, cat# 410571).

The chromogenic assay (SPINK4) was performed as described before with minor modifications (Palmer et
al. 2019). Slides were incubated 30 min at 60°C to enhance tissue adherence. Slides were deparaffinized
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using xylene and rehydrated through a series of graded ethanol washes. Slides were treated with hydrogen
peroxide to block endogenous peroxidase activity, followed by epitope unmasking using a boiling target
retrieval solution. Hydrophobic barriers were drawn around the tissues to contain reagents. Unless stated
otherwise, all incubations were performed at 40°C in a HybEZ hybridization oven followed by a 1x Wash
Buffer wash. Slides were incubated with the Protease Plus for 15 minutes to break down RNA-associated
proteins. Probes were then applied to each slide and incubated for 2 hours. The amplification steps were
carried out sequentially using AMP1, AMP2, AMP3, AMP4, AMP5, and AMP6, with varying incubation
times (30, 15, 30, 15, 30, and 15 minutes) and temperatures (40°C for AMP1-4, and room temperature for
AMP5 and AMP6). Chromogenic detection was performed using a 1:60 dilution of RED-A:RED-B,
followed by a counterstaining with Gill’s Hematoxylin I (American Master Tech Scientific, cat#
HXGHEI1LT, diluted 1:1 in dH,0). Slides were immediately air-dried for 20 minutes at room temperature,
after which two drops of Vecta Mount (Vector Laboratories, cat# H-5700-60) were applied. Coverslips (#1
thickness) (Fisherbrand, cat# 12-545-F) were mounted, and the slides were left to dry for 20 minutes at room

temperature.

The fluorescent in situ hybridization single-plex staining (PIGR and BEST4) protocol is available on
protocols.io (dx.doi.org/10.17504/protocols.io.j8nlk99q1v5r/vl). The assay was performed identically to
the chromogenic assay for the pretreatment and the hybridization steps. The amplification was performed
with AMP1 (30 minutes), AMP2 (30 minutes), and AMP3 (15 minutes). Detection was performed with
horseradish peroxidase channel 1 (HRP-C1) for 15 minutes and washed. The Opal 570 Reagent fluorophore
(Akoya Biosciences, cat#FP1488001KT, dilution 1:750 in RNAscope Multiplex TSA Buffer [Advanced
Cell Diagnostics, cat# 322809]) was incubated on the slides for 30 minutes. After the wash, the horseradish
peroxidase (HRP) blocker was added to the slides and incubated for 15 minutes. Incubations were performed
at40°C in a HybEZ oven, followed by a wash performed twice with 1X Wash Buffer for 2 minutes at RT. All

the slides were incubated with DAPI (Advanced Cell Diagnostics, cat# 323108) for 30 seconds at RT and
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mounted with 2 drops of ProLong Gold Antifade reagent (Invitrogen, cat# P36930) and covered with #1.5

thickness cover glass (Fisherbrand, cat# 12-545-F).

The fluorescent in situ hybridization duplex staining (C1-PIGR and C2-SPINK4 or C1-BEST4 and C2-
SPINK4 or Cl1-BEST4 and C2-CFTR) protocol is available on  protocols.io
(dx.doi.org/10.17504/protocols.io.14egn99kql5d/v1). The probe solution applied to each slide contained the
C2 probes diluted in the C1 probe solution (1:50). After the application of the Opal 570 Reagent fluorophore
(Akoya Biosciences, cat#FP1488001KT, dilution 1:750 in RNAscope Multiplex TSA Buffer [Advanced
Cell Diagnostics, cat# 322809]) and the incubation with HRP blocker, the detection of the C2 probes was
performed with horseradish peroxidase channel 2 (HRP-C2) for 15 minutes and washed. The Opal 690
Reagent fluorophore (Perkin Elmer, cat#FP1497A, dilution 1:1200 in RNAscope Multiplex TSA Buffer
[Advanced Cell Diagnostics, cat# 322809]) was incubated on the slides for 30 minutes. After the wash, the

horseradish peroxidase (HRP) blocker was added to the slides and incubated for 15 minutes.

Chromogenic immunohistochemistry (IHC)

The THC assay was performed as described before ”. Briefly, slides were incubated for 20 minutes at 60°C,
deparaffinized in xylene, and rehydrated with ethanol and distilled water using a histological automaton
(Leica Biosystem, cat#ST5020). Antigen retrieval was performed by submerging the slides in preheated
distilled water, followed by incubation in 1X sodium citrate solution for 15 minutes at 95°C. Hydrophobic
barriers were drawn around the sections, and slides were incubated with Dual Endogenous Enzyme Block
(Dako, cat#S2003) for 10 minutes at RT, Protein Block (Dako, cat#X0909) for 20 minutes at RT, and
primary antibody ([Goat Anti-Rabbit IgA, Abcam Limited, cat#ab97186, 1:3000], [Mouse anti-KI167, BD
Biosciences, cat#AB_393778; 1:40], dilution in 1% bovine serum albumin [BSA] PBS, 4°C overnight)
sequentially. Slides were then incubated with a secondary antibody ([ImmPRESS™ HRP Anti-Goat Ig,
Vector, cat# MP-7405] or [HRP Labelled Polymer Anti-Mouse, Dako, cat#K400111-2]) for 30 minutes at

RT, followed by DAB chromogen for 7 minutes at RT in the dark, and counterstained with 25% diluted
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Gill’s hematoxylin (American Master Tech Scientific, catHtHXGHE1LT) for 1 minute at RT. Slide washes
were performed after each incubation using a 0.05% PBS-Tween solution. Slides were dehydrated in ethanol
and Propar clearant (Anatech, cat#510) sequentially, mounted with Refrax Mounting Medium (Anatech,
cat#711), and covered with #1 thickness cover glass (Fisherbrand, cat#12-545-F) using a histological
automaton (Leica Biosystem, cat#ST5020). Negative controls were treated with 1% BSA in PBS without the

primary or secondary antibodies.

Electron microscopy

Electron microscopy analyses were performed in CMEAB (Toulouse, France). Transmission electron
microscopy (TEM): Following fixation, samples were washed overnight in 0.2 M Soérensen phosphate buffer
(pH 7.4). Post-fixation was carried out at room temperature for 1 hour in 0.05 M Sérensen phosphate buffer
(pH 7.4) with 1% OsO,4 and 0.25 M glucose. Dehydration was performed using graded ethanol series at room
temperature, up to 70%. From then, the tissues were embedded in Embed 812 resin (Electron Microscopy
Sciences) using a Leica EM AMW automated microwave tissue processor for electron microscopy. Once
poylymerized, the samples were sliced into ultrathin sections (70 nm) using an Ultracut Reichert Jung
ultramicrotome and mounted onto 100-mesh Formvar-coated copper grids. Sections were then stained with
3% uranyl acetate in 50% ethanol and Reynold’s lead citrate. Examinations were conducted on a
transmission electron microscope (Hitachi HT7700) at an accelerating voltage of 80 kV. Scanning electron
microscopy (SEM): After washing the sample in water, dehydration was performed through a graded ethanol
series, up to 100% ethanol. Critical point drying was carried out with a Leica EM CPD 300. Dried samples
were then coated with a 6 nm layer of platinum using a Leica EM MEDO020. SEM imaging was performed

using a FEG FEI Quanta 250 scanning electron microscope at an accelerating voltage of 5 kV.

Culture of rabbit caecum organoids in 3D
Caecum organoids derived from suckling rabbits (18-day-old) were obtained from our in-house biobank 7.
Briefly, cryopreserved caecum epithelial crypts kept in liquid nitrogen were thawed at 37°C, centrifuged
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(500 g, 4°C, 5 min) and seeded in Matrigel (Corning, cat#354234) in a pre-warmed 48-well plate (25
pL/well). Organoid growth culture medium containing IntestiCult Organoid Growth Medium (Human)
(StemCell Technologies, cat#6010) supplemented with 1% Penicillin-Streptomycin (Sigma, cat#P4333) and
100 pg/mL Primocin (InvivoGen, cat#ant-pm-05) was added (250 pL/well). Organoids were cultured at
37°C with 5% CO2. Seven days after seeding, organoids in Matrigel were washed in PBS
(ThermoFischerScientific, cat#10010015) and homogenized by pipetting in warm TrypLE
(ThermoFischerScientific, cat#12605-010) before incubation for 10-15 min at 37°C. Digestion was stopped
by adding cold complete DMEM (DMEMCc) containing DMEM (ThermoFischerScientific, cat#31966047)
supplemented with 10% fetal bovine serum (FBS, ThermoFischerScientific, cat#10270-106) and 1%
Penicillin-Streptomycin. Cells were centrifuged (500 g, 4°C, 5 min) and counted using a Countess 3
Automated Cell Counter (ThermoFischerScientific, cat#16842556). Organoid cells were seeded for
expansion in 3D in Matrigel: DMEMCc (v/v: 2:1) in pre-warmed 24-well plates (3 000 cells/50 pL/well) and
organoid culture medium was added (500 pL/well) and replaced every 2—3 days. Organoids were used to
seed cell monolayers 7 days after seeding. Experiments were repeated with organoid cells derived from n=5

rabbits.

Culture of 2D cell monolayers derived from rabbit caecum organoids

Cell culture inserts for 24-well plates (Corning, cat#353095) were coated with 50 pg/mL Collagen type IV
from human placenta (Sigma, cat#C5533) for 2 h at 37°C (150 pL/well). The coating solution was removed
and the inserts were dried for 10 min by opening the plate lid under the cell culture cabinet. Organoids were
dissociated and cells were counted and centrifuged as described above. Cells were resuspended in organoid
growth culture medium supplemented with 20% FBS and 10 pM Y27632 (ATCC, cat#ACS-3030) before
seeding in inserts (10° cells/insert). The same medium was used at the basal side. Cells were incubated at
37°C, 5% CO2. Three days after seeding, the apical and basal medium was replaced by organoid
differentiation medium containing IntestiCult Organoid Differentiation Medium (Human) (StemCell
Technologies, cat#100-0214) supplemented with 1% Penicillin-Streptomycin (Sigma, cat#P4333), 100
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pg/mL Primocin (InvivoGen, cat#ant-pm-05), and 5 pM DAPT (ThermoFisher, cat#J65864.MA). Four days
after seeding, the apical medium was replaced by organoid differentiation culture medium supplemented or
not with 5 mM sodium butyrate (Sigma, cat#B5887). The basal medium was replaced with organoid
differentiation culture medium. Six days after seeding, cells were lyzed in 300 puL. TriReagent (Ozyme, cat#

ZR2050-1-200) and kept at —80°C until RNA purification.

Gene expression analysis by quantitative PCR

RNA was purified from organoid cells by using the Direct-zol RNA Microprep kit (Zymo Research,
cat#R2062) and from intestinal tissue sections by using the Direct-zol RNA Miniprep kit (Zymo Research,
cat#R2050), following the manufacturer instructions. RNA was eluted in RNAse-free water (15 pL for
organoids, 50 pL for intestinal tissue sections) and quantified with a NanoDrop 8000 spectrophotometer
(Thermo Fisher Scientific). RNA (500 ng for organoid cells, 1pg for intestinal tissue sections) were reverse
transcribed to ¢cDNA by using the GoScript Reverse Transcription Mix, Random primer (Promega,
cat#A2801), following the manufacturer instructions. Gene expression was analyzed by real-time qPCR
using QuantStudio 6 Flex Real-Time PCR System (Thermofisher) or Biomark microfluidic system using
96.96 Dynamic Arrays IFC for gene expression (Fluidigm) according to the manufacturers
recommendations. The sequences of the primers used are presented in Supplementary table S6. Data were
normalized to the stably expressed gene TOP1 (organoid cells) or ATP5B (intestinal tissue sections) and

analyzed with the 2*“ method.

Statistical analyses of microbiota, metabolites, calprotectin and qPCR data

Statistical analyses of the log transformed relative abundances of bacterial taxa and metabolite
concentrations (caecum or plasma), calprotectin concentration in epithelial cells and gene expression
measured by gPCR in intestinal tissue segments or organoids were performed with the R software (version
4.2.1). Linear mixed models with the group (Milk or Milk+Solid) as a fixed effect and the litter as a random

effect were estimated to analyze microbiota, metabolite and calprotectin data. Linear mixed models with the
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gut segment (duodenum, jejunum, ileum, caecum or colon) as a fixed effect and the rabbit as a random effect
were estimated to analyze gene expression measured by qPCR in intestinal tissue sections. Linear mixed
models with the treatment (control or butyrate) as a fixed effect and the rabbit from which organoids were
derived and the experimental batch as random effects were estimated to analyze gene expression measured
by gPCR in cell monolayers derived from organoids. P-values were corrected for multiple testing using the
BH procedure. The significance of the group effect was tested and results were considered significant if their

corresponding adjusted P-value was < 0.05.

Data availability

The scRNA-seq data for this study have been deposited in the European Nucleotide Archive (ENA) at
EMBL-EBI under accession number PRJEB74645 (www.ebi.ac.uk/ena/browser/view/PRJEB74645). The
data are also accessible on the FAANG portal ( https://data.faang.org/dataset/PRJEB74645) and are
publicly available on the Broad Institute Single-cell Portal
(https://singlecell.broadinstitute.org/single_cell/study/SCP2662/single-cell-transcriptomics-in-caecum-
epithelial-cells-of-suckling-rabbits-with-or-without-access-to-solid-food). 16S sequencing data have been
deposited in NCBI Sequence Read Archive (SRA) under accession number PRJINA1130383. NMR raw
spectra have been deposited in Metabolights under accession number MTBLS10648. All authors had access

to the study data and had reviewed and approved the final manuscript

38


https://singlecell.broadinstitute.org/single_cell/study/SCP2662/single-cell-transcriptomics-in-caecum-epithelial-cells-of-suckling-rabbits-with-or-without-access-to-solid-food
https://singlecell.broadinstitute.org/single_cell/study/SCP2662/single-cell-transcriptomics-in-caecum-epithelial-cells-of-suckling-rabbits-with-or-without-access-to-solid-food
http://www.ebi.ac.uk/ena/browser/view/PRJEB74645

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

77
78

Acknowledgments

This work was supported by a grant from the French National Research Agency: ANR-JCJC MetaboWean
(ANR-21-CE20-0048). Tania Malonga was supported by grants from Toulouse-INP, INRAE and Oak Ridge
Institute for Science and Education (ORISE). The authors thank Isabelle Fourquaux (CMEAB, Toulouse,
France) for assistance with electron microscopy analyses. We acknowledge the I2MC cytometry and cell
sorting facility (Genotoul-TRI), member of the national infrastructure France-Biolmaging supported by the

French National Research Agency (ANR-10-INBS-04).

Disclosures

The authors declare no competing interests.

Author contributions

CK, CLL, NV and MB designed research;

™M, CK, JA, EL, AP, EJ, CL, MD, IP, ER, Al and MB conducted research;
TM, CC, NV and MB analyzed data;

TM, NV and MB wrote the initial draft.

All authors have read and approved the final manuscript.

39



A Cage A B C

F 9 -

- & 5004
i
Y
T 4004 £ Z a00-
¢ = Eg
o 4 x =
2 2004 B S £ 2 00
| Suckling once a day for 5-10 min |
T L r—— " Milk_ MiIK+Solid
Cﬂge B nge C 12 24/25
) . Days
Milk Milk+Solid
o d&‘\- -e Milk
e B N -4 Milk+Solid
i i 1§ :
= & i

oy
&

EETS
Pair of age-matched littermate male rabbits o 204 & c
- = 301
' ' £5 :
°4g 2 20
I g 88 E
L RS QoY | =Ch a Z
i ! . | v i = @ 104
Milke 4 i | | Milk+solid 3 sl . g
n=1 | 4 ; | 4 ; i n=1 &
| : : Logm—— R m——
Lo H [ Milk Milk+Solid Milk Milk+Solid

Caecum epithelium single cell transcriptomics

|

Repeated for n=4 litters

932

933

79
80

40



934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

81
82

Figure 1. Experimental design.

(A) Schematic representation of the experimental design that was repeated for n=4 litters. At postnatal day
(PND) 12, pups within each litter were separated in 2 cages (3 pups/cage) adjacent to the cage of their mother
to form two groups. In the first group (Milk), the pups were exclusively suckling. In the second group
(Milk+Solid), the pups were suckling while having access to solid food. The dam and the pups were
regrouped in a nest once a day for 5-10 minutes for suckling before returning to their respective cages. On
PND24/25, one pup per litter from each group was sacrificed for the isolation of caecal epithelial cells and
single-cell RNA-sequencing (Milk group: n=4 pups, Milk+Solid group: n=4 pups).

(B) Rabbit weights at D12 and D24/25.

(C) Total milk intake per rabbit between D12 and D24/25.

(D) Total solid feed intake per rabbit between D12 and D24/25. Feed intake was estimated at the cage level
(3 pups) by weighing the feeder. Data points represent values measured in each cage.

(E) Full caecum weight per rabbit. ***: P < .001.

(B, C and E): Points represent individual values in rabbits and dotted lines link littermates.
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Figure 2. A single-cell transcriptomic atlas of the rabbit caecum epithelium

(A) Uniform Manifold Approximation and Projection (UMAP) of cells colored by epithelial cell type. The
13,805 cells were derived from n=8 suckling rabbits ingesting or not solid food (n=4/group).

(B) Expression of selected marker genes for each cell type (average expression across cells in color and
percentage of cells expressing the marker in size).

(C) UMAPs colored by the expression of marker genes of each cell type.

(D) Average expression of the top 10 marker genes with the highest average log2(fold change) for each cell
type. For a given cell type, markers were ordered by decreasing log2(fold change) of the expression between
this cell type and the other types.

AC: absorptive cells, EEC: enteroendocrine cells, TA: transit amplifying cells
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Figure 3. Transcriptionally distinct cell populations in the rabbit caecum epithelium.

(A) Relative abundance for each cell type.

(B) Crypt axis score for each cell type.

(C) Localization of transit amplifying cells in the rabbit caecum epithelium by immunostaining of Ki67
(brown). Nuclei are stained in blue. Scale bar 50 pm.

(D) Uniform Manifold Approximation and Projection (UMAP) colored by the inferred cell cycle state.

(E) Selected biological processes enriched in marker genes for each cell type. The color corresponds to the -
log10(adjusted P-value) of the over-representation test and the size corresponds to the percentage of marker
genes among the genes of the ontology term.

(F) UMAP colored by the pseudotime of the stem and absorptive cells.

AC: absorptive cells, EEC: enteroendocrine cells, TA: transit amplifying cells
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Figure 4. BEST4" cells in the rabbit intestine

(A) Localization of BEST4" cells in the rabbit caecum epithelium by in situ hybridization of BEST4 mRNA
(red). Nuclei are stained in blue. Scale bar 50 pm.

(B) Transmission electron microscopy observation of absorptive cells. The white arrowhead shows an
electron dense absorptive cell. Scale bar 10 pm.

(C) Scanning electron microscopy observation of microvilli. White arrowheads show cells with low density
of microvilli. Scale bar 5 pm.

(D) Uniform Manifold Approximation and Projection (UMAP) of cells colored by the expression of CFTR.
(E) Dual in situ hybridization of CFTR mRNA (pink) and BEST4 mRNA (yellow) in rabbit caecum
epithelium. Scale bars 100 pm (left panel), 50 pm (middle panel) and 10 pm (right panel). Nuclei are stained
in blue. White arrowheads show cell stained with both CFTR and BEST4.

(F) Gene expression of BEST4, CA7 and OTOP?2 in tissue sections of duodenum, jejunum, ileum, caecum,
and colon.

(G) Gene expression of CFTR, CA1 and AQP8 in tissue sections of duodenum, jejunum, ileum, caecum, and
colon.

(F and G) Points represent individual values in rabbits and dotted lines link intestinal region from the same
rabbit. Expression values in intestinal regions associated with different letters are significantly different (P <

.05).
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Figure 5. Secretory cells in the rabbit caecum epithelium and homology with human epithelial cells
(A) Localization of goblet cells in the rabbit caecum epithelium by in situ hybridization of SPINK4 mRNA
(red). Nuclei are stained in blue. Scale bar 50 pm.

(B) Localization of goblet cells and BEST4" cells in caecum epithelial crypts of rabbits by dual in situ
hybridization of SPINK4 mRNA (pink) and BEST4 mRNA (yellow). Nuclei are stained in blue. Scale bar 50
pm.

(C) Transmission electron microscopy (TEM) observation of a goblet cell. The white arrowhead shows
mucin granules. Scale bar 5 pm.

(D) Scanning electron microscopy observation of a goblet cell. Scale bar 2 pm.
(E) TEM observation of an enteroendocrine cell containing basal electron dense granules (white arrowhead).
Scale bar 10 pm.
(F) TEM observation of Paneth-like cells containing apical electron dense granules (white arrowheads) at
the crypt base. Scale bar 5 pm.
(G) Uniform Manifold Approximation and Projection (UMAP) colored by label transfer from human large
intestine epithelial cells to rabbit caecal epithelial cells.
(H) UMAP colored by mapping score calculated using the large intestine human epithelium as a reference.
(I) UMAP colored by epithelial cell types for each rabbit order by groups (rows) and litters (columns).

AC: absorptive cells, EC: enterochromaffin cells, EEC: enteroendocrine cells, TA: transit amplifying cells.
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Figure 6. Ingestion of solid food by suckling rabbits modulates the transcriptome of each epithelial cell
type

(A) Uniform Manifold Approximation and Projection (UMAP) of epithelial cells colored by group. The left
panel shows UMAP of merged datasets, with cells restricted to Milk (n=4) and Milk+Solid (n=4) groups
shown independently on the middle and right panels, respectively.

(B) Number of differentially expressed genes (DEGs) between groups per cell type. Gray bars represent
downregulated genes in the “Milk+Solid” group while white bars represent upregulated genes in the
“Milk+Solid” group. DEG were obtained by using Negative Binomial generalized linear models on pseudo-
bulk data fitted independently in each cell type.

(C) Relative abundance of each epithelial cell type. Points represent individual values per rabbit and dotted
lines link littermates.

(D) Volcano plots of test results for each cell type. The -log10(adjusted P-value) are plotted on the y-axis and
the log2(fold change) values are plotted on the x-axis.

AC: absorptive cells, EEC: enteroendocrine cells, TA: transit amplifying cells
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Figure 7. Transcriptomic changes induced by the introduction of solid food and shared between
several cell types.

(A) Number of differentially expressed genes (DEGs) that are cell type-specific or shared by multiple cell
types for stem cells, mature absorptive cells, BEST4" cells, and goblet cells.

(B) Selected DEGs significance (log10(adjusted P-value), color) and fold change sign (red for over
expressed and blue for under expressed in the “Milk+Solid” group versus the “Milk” group), by cell type.
The size represents the percentage of cells expressing the gene in the corresponding cell type.

(C-E) Expression level of selected DEGs shared between several cell types, by cell (dot) per cell type and
group.

(F) Localization of PIGR mRNA (red) by in situ hybridization in the rabbit caecum epithelium. Nuclei are
stained in blue. Scale bar 50 pm.

(G) Uniform Manifold Approximation and Projection (UMAP) of goblet cells colored by the expression of
SPINK4 or PIGR.

(H and I) Dual in situ hybridization of SPINK4 mRNA (pink) and PIGR mRNA (yellow) in caecum
epithelial crypts of rabbits. Nuclei are stained in blue. Scale bars 50 pm (crypts) and 5 pm (insets). (H)
Observation of SPINK4" / PIGR' cells. (I) Observation of SPINK4" / PIGR" cells.

(J) Immunostaining of immunoglobulin A (IgA, brown) in the rabbit caecum epithelium. Black arrowheads
show IgA" cells with a goblet cell morphology. Nuclei are stained in blue. Scale bar 50 pm.

AC: absorptive cells, EEC: enteroendocrine cells, TA: transit amplifying cells
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Figure 8. Cell-type specific transcriptomic changes induced by the introduction of solid food.

(A-C) Expression level of selected differentially expressed genes (DEGs) specific of a single cell type, by
cell (dot), per cell type and group.

(D) Selected biological processes enriched in DEGs of each cell type. The color corresponds to the -
log10(adjusted P-value) and the size represents the percentage of DEGs included in the biological process.

AC: absorptive cells, EEC: enteroendocrine cells, TA: transit amplifying cells
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Figure 9. The introduction of solid food modifies the expression of genes involved in epithelial
defenses.

(A-D) Top: Selected differentially expressed genes (DEG) significance (log10(adjusted P-value), color) and
fold change sign (red for over expressed and blue for under expressed genes in the “Milk+Solid” group
versus the “Milk” group) involved in (A) detoxification and redox balance, (B) interferon signaling, (C)
cytokine signaling, (D) antimicrobial peptides. The size corresponds to the percentage of cells expressing the
gene in the cell type. Bottom: Expression level of a selected DEG by cell (dot), per cell type and group.
(E) Concentration of calprotectin in caecum epithelial cells. Points represent individual values per rabbit and
dotted lines link littermates. ***: P < .001.

AC: absorptive cells, EEC: enteroendocrine cells, TA: transit amplifying cells
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Figure 10. The introduction of solid food modifies the expression of genes involved in the mucus
barrier, epithelial differentiation and renewal.

(A-B) Top: Selected differentially expressed genes (DEG) significance (log10(adjusted P-value), color) and
fold change sign (red for over expressed and blue for under expressed genes in the “Milk+Solid” group
versus the “Milk” group) involved in (A) glycosylation, and (B) mucus components. The size corresponds to
the percentage of cells expressing the gene in the cell type. Bottom: Expression level of a selected DEG by
cell (dot), per cell type and group.

(C) Representative histological observation of the caecum mucosa in each group. Alcian blue shows acidic
mucins. Tissues are counterstained with hematoxylin and eosin. Scale bar 20 pm.

(D) Number of goblet cells per crypt. Points represent individual values per rabbit and dotted lines link
littermates.

(E-F) Top: Selected DEG significance (log10(adjusted P-value), color) and fold change sign (red for over
expressed and blue for under expressed genes in the “Milk+Solid” group versus the “Milk” group) involved
in (E) differentiation, and (F) stemness and proliferation. The size corresponds to the percentage of cells
expressing the gene in the cell type. Bottom: Expression level of a selected DEG by cell (dot), per cell type
and group.

(G) Epithelial crypt depth. Points represent individual values per rabbit and dotted lines link littermates.

AC: absorptive cells, EEC: enteroendocrine cells, TA: transit amplifying cells
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Figure 11. Solid food-induced modifications of the expression of genes involved in epithelial nutrient
handling is associated with changes in concentrations of plasma and caecal metabolites.

(A-C) Top: Selected differentially expressed genes (DEG) significance (log10(adjusted P-value), color) and
fold change sign (red for over expressed and blue for under expressed genes in the “Milk+Solid” group
versus the “Milk” group) involved in (A) lipid metabolism, (B) epithelial transport and (C) hormone
secretion. The size corresponds to the percentage of cells expressing the gene in the cell type. Bottom:
Expression level of a selected DEG by cell (dot), per cell type and group.

(D) Plasmatic concentrations of metabolites. Points represent individual values per rabbit and dotted lines
link littermates. *: P < .05, **: P < .01, ***: P < ,001. HDL: high-density lipoprotein; LDL: low-density
lipoprotein.

(E) Relative caecal concentrations of metabolites detected by nuclear magnetic resonance-based
metabolomics. Points represent individual values per rabbit and dotted lines link littermates. *: adjusted P <
.05, **: adjusted P < .01, ***: adjusted P <.001.

AC: absorptive cells, EEC: enteroendocrine cells, TA: transit amplifying cells
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Figure 12. The gut microbiota-derived metabolite butyrate modifies gene expression in cell
monolayers derived from rabbit caecum organoids.

(A) Experimental design. Rabbit caecum organoid cell monolayers were treated or not with butyrate (5 mM)
for 2 days. A representative observation of 3D rabbit caecum organoids is shown in the left panel (scale bar
500 pm). Representative observations of organoid cell monolayers untreated or treated with butyrate are
shown in the middle and right panel, respectively (scale bar 100 pm).

(B-D) Gene expression in organoid cell monolayers treated by butyrate. Data are expressed relatively to the
value measured in the control condition in the same experiment, represented by the dotted line (y=1). Data
points shows values measured in an individual cell culture insert. Horizontal bars show the mean value.

Significant differences with the control are indicated by *: P < .05, **: P < .01, ***: P <.001.
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Figure 13. Quality controls of single-cell transcriptomics.

(A) Counts, number of expressed genes, and percentage of mitochondrial gene reads per cell and rabbit
before filtering.

(B) Counts, number of expressed genes, and percentage of mitochondrial gene reads per cell and rabbit after
filtering.

(C) Uniform Manifold Approximation and Projection (UMAP) of cells colored by the total counts per cell.
(D) UMAP colored by the number of expressed genes.

(E) UMAP colored by the percentage of mitochondrial gene reads.

(F) UMAP colored by clusters.

(G) Expression of the top 50 genes with the highest average log2(fold change) of each cluster. For a given
cluster, markers were ordered by decreasing log2(fold-change) of the expression between this cluster and the

other clusters. Cell clusters are indicated by numbers and colored bars on the top.
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Figure 14. Pseudotime and principal component analysis.

(A) Pseudo-time distribution of absorptive cells (AC). The area under the curve is colored with respect to

chosen AC subset borders.

(B) Pseudo-time distribution in stem cells and AC subsets.

(C) Principal components analysis performed on pseudo-bulk data for each epithelial cell type. Individual

samples are represented by the rabbit (R) identifier. The dotted lines connect rabbit littermates.

AC: absorptive cells, EEC: enteroendocrine cells, TA: transit amplifying cells.
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SUPPLEMENTAL TABLE LEGENDS

Table S1. Marker genes of each cell type

List of the marker genes of each cell type (presented in separate tabs) identified by using the FindAlIMarkers
function of Seurat. Columns give the gene name, the P-value of the Wilcoxon rank test, the adjusted P-value
(Bonferroni procedure), and the average log2(fold-change). Pct.1 is the percentage of cells expressing the
gene in the cell type indicated in the tab name, while pct.2 is the percentage of cells expressing the gene in all

other cell types. AC: absorptive cells, EEC: enteroendocrine cells, TA: transit amplifying cells.

Table S2. Biological pathways enriched in the marker genes of each cell type

List of biological pathways enriched in the marker genes of each cell type (presented in separate tabs).
Columns give the Gene Ontology (GO) identifier (ID), the pathway name (Description), the GeneRatio
(number of marker genes over the number of genes in the biological pathway), the BgRatio (total number of
genes in the biological pathway over the total number of genes expressed in the scRNA-seq dataset), the P-
value and the adjusted P-value (Benjamini-Hochberg procedure) of the over-representation test, and the
genelD (list of marker genes in the biological pathway), respectively. AC: absorptive cells, EEC:

enteroendocrine cells, TA: transit amplifying cells.

Table S3. Differentially expressed genes between groups in each cell type

List of the differentially expressed genes (DEGs) between groups (“Milk” vs “Milk+Solid”) in each cell type
(presented in separate tabs) identified by fitting Negative Binomial generalized linear models on pseudo-
bulk data in each cell type independently. The columns give the gene name, the log2(fold change), the log
counts per million (CPM) reads, the likelihood (LR) ratio, the P-value (LR test), the adjusted P-value
(Benjamini-Hochberg procedure), and the over or under-expressed state of the gene in the “Milk + Solid”
group versus the “Milk” group, respectively. AC: absorptive cells, EEC: enteroendocrine cells, TA: transit

amplifying cells.
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Table S4. Biological pathways enriched in differentially expressed genes between groups in each cell
type.

List of biological pathways enriched in differentially expressed genes (DEGs) between groups (“Milk” vs
“Milk+Solid”) per cell type. Columns give the Gene Ontology (GO) identifier (ID), the pathway name
(Description), the GeneRatio (number of DEG over the number of genes in the biological pathway), the
BgRatio (total number of genes in the biological pathway over the total number of genes expressed in the
scRNA-seq dataset), the P-value and the adjusted P-value (Benjamini-Hochberg procedure) of the over-
representation test, and the genelD (list of DEGs in the biological pathway). AC: absorptive cells, EEC:

enteroendocrine cells, TA: transit amplifying cells.

Table S5. Bacterial relative abundance in the caecum.

Relative abundances of bacterial taxa at the phylum, family, and genus level in the caecum content of rabbits
determined by 16S rRNA gene amplicon sequencing. Columns give the P-value (linear mixed model), the
adjusted P-value, the mean relative abundance per group, and the standard error of the mean (SEM) for each

taxa which abundance was > 0.5% in at least one group (repeatability threshold for quantitative analyses).

Table S6. Sequences of rabbit primers used for gPCR analyses
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