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Abstract 

Background:  Metabolomics describes the metabolic profile of an organism at a given 
time by the concentrations of its constituent metabolites. When studied over time, 
metabolite concentrations can help understand the dynamical evolution of a bio‑
logical process. However, metabolites are involved into sequences of chemical reac‑
tions, called metabolic pathways, related to a given biological function. Accounting 
for these pathways into statistical methods for metabolomic data is thus a relevant 
way to directly express results in terms of biological functions and to increase their 
interpretability.

Methods:  We propose a new method, phoenics, to perform differential analysis 
for longitudinal metabolomic data at the pathway level. In short, phoenics proceeds 
in two steps: First, the matrix of metabolite quantifications is transformed by a dimen‑
sion reduction approach accounting for pathway information. Then, a mixed linear 
model is fitted on the transformed data.

Results:  This method was applied to semi-synthetic NMR data and two real NMR data‑
sets assessing the effects of antibiotics and irritable bowel syndrome on feces. Results 
showed that phoenics properly controls the Type I error rate and has a better ability 
to detect differential metabolic pathways and to extract new impacted biological func‑
tions than alternative methods. The method is implemented in the R package phoenics 
available on CRAN

Keywords:  Mixed model, Longitudinal data, Metabolomics, Metabolic pathways

Background
Metabolomic datasets provide the amount of small molecules, called metabolites, that 
are present in complex mixtures at a given time. Metabolomics gives access to func-
tional information due to its proximity to the phenotype [1, 2]. It is also a non-invasive 
method when performed on easily accessible biological samples, such as urine or blood 
[3]. Metabolomic analyses are used in various areas, such as biomarker discovery in pre-
cision medicine [4] or cancer diagnosis [5].

It is thus not surprising that more and more experiments target the evolution of the 
metabolome over time, in different conditions, or following an event of interest [6–
8]. In these cases, metabolomic data are acquired at several time points on the same 
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individuals. Here, we target such cases and we address the question of using time-course 
metabolomic data acquired in several experimental conditions to extract biomarkers 
of either the differences between conditions or of the time effect. This question is illus-
trated on a typical use case in Sect. “Analysis of antibiotics effect with phoenics”, where 
biomarkers of the effect of an antibiotic treatment over time are obtained from feces 
metabolome.

A common approach to analyze longitudinal multivariate data is to rely on mixed 
linear models [9]. This type of model is well adapted to longitudinal data because it 
can incorporate a random individual effect, accounting for the dependency between 
repeated measurements on the same individuals. The fixed effects thus correspond to 
controlled effects and effects of interest, as experimental conditions or time in longitu-
dinal analyses. In addition, in metabolomics, this type of model is frequently combined 
with dimension-reduction techniques, due to the high dimensionality of the data [10].

However, metabolites are functionally grouped into sequences of chemical reactions, 
called metabolic pathways. Accounting for pathways into statistical methods for metab-
olomic data is thus a good way to directly express results in terms of biological functions 
and to increase their interpretability. Typically, this is done by enrichment analysis (or 
Over-Representation Analysis (ORA)), which consists of performing tests independently 
for each metabolite and combining the results of these tests to extract pathways contain-
ing more differential metabolites than what would have been expected by chance [11]. 
A drawback is that this approach does not account for the correlation between metabo-
lites within a pathway, which can lead to a loss of information about the overall pathway 
dynamics.

In addition to enrichment analysis, Functional Class Scoring (FCS) methods have been 
used to perform differential analysis. Most of these methods have been developed in 
the field of transcriptomics, to perform tests at a gene set level, but they can be eas-
ily extended to metabolomic pathway analysis. Maleki et al. [12] propose an exhaustive 
review of these approaches in the field of transcriptomics. They identify a large number 
of univariate FCS methods, e.g., Mootha et  al. [13–18], in which a gene score is typi-
cally computed for each gene and then gene scores are used to calculate a gene set score 
and to derive a p-value. However, apart from the method of Jiang and Gentleman [18], 
these approaches are only adapted to compare two conditions and can not handle lon-
gitudinal data and repeated measurements. In addition, even if the method of Jiang and 
Gentleman [18] can be adapted to more complex settings and can also adjust the results 
for fixed effect covariates, it is not designed to handle random effects and repeated 
measurements.

In contrast to univariate FCS methods, multivariate FCS methods directly calculate 
gene set scores from the original data. Calculating a gene set score instead of gene scores 
allows leveraging the overall pathway dynamics and thus increases the sensitivity in 
pathway detection, especially when the signal in the original data is low [19]. Indeed, 
approaches like enrichment analysis are based on the power of a primary analysis where 
metabolites are analyzed independently and are therefore unable to detect differential 
pathways that correspond to an accumulation of small effects on metabolites (found 
non-differential due to a lack of power, for instance). Furthermore, a gene set score 
approach reduces the dimensionality of the data, as the number of gene sets is smaller 
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than the number of genes. In the field of metabolomics, Wieder et al. [19, 20] develop 
one of these methods, where they transform the data at the metabolite level to data at 
the pathway level before performing differential analysis on this transformation. In the 
field of transcriptomics, multivariate FCS methods include the work of Goeman et al. 
[21, 22] based on multivariate GLM or on Hotelling’s test [23] but again, this proposal 
can not account for covariates. More recently, Ozier-Lafontaine et  al. [24] proposes a 
nonlinear test for gene sets based on a kernel approach. In its current available imple-
mentation, the test is also restricted to test differences between two conditions without 
covariates.

Here, we present an extension of the method of Wieder et al. [20] to allow for the anal-
ysis of longitudinal repeated measurements. Our method, called phoenics proceeds in 
two steps: a data transformation similar to the one of Wieder et  al. [20] and a mixed 
model. The method is benchmarked against enrichment analysis (ORA), ktest [24], and 
globaltest [21] on semi-synthetic and experimental NMR data in Sect. “Results and dis-
cussion”. The method is implemented in the R package phoenics available on CRAN.1 
The package allows to use any kind of pathway information provided by the user. In the 
current implementation of the package, an automatic research of the pathways can be 
perfomed in the KEGG database.

Methods
In the following, X is a (nT ×m)-matrix of quantifications, where n is the number of 
individuals, T the number of time points (hence, the total number of observations is 
equal to nT), and m the number of metabolites. X is organized such that its n first rows 
correspond to the quantification measurements of the n individuals at the first time 
point. In addition, individuals can belong to different conditions of interest or to differ-
ent groups of controlled conditions that form, along with time, the fixed effects. Here, 
we target the question of the test of a given fixed effect accounting for repeated measure-
ments and pathway information on the metabolites.

In general, such questions are handled by performing independent tests of the tar-
geted fixed effect with linear mixed models and then by post-processing the results of 
these tests with an enrichment analysis [16]. Enrichment analysis consists of splitting 
metabolites into significant and non-significant groups according to the results of the 
individual tests and in computing a cross table between this information and the inclu-
sion in a given pathway, Ml . The pathway p-value is finally obtained with a Fisher exact 
test on this cross table. A “background” metabolite set is usually used to define the set of 
all achievable metabolites (e.g., the quantified metabolites) and its definition is known 
to have a strong impact on the results of enrichment analysis. In particular, using a non-
specific background (all known metabolites of a given organism) can lead to a large 
number of false positives [25].

1  https://​CRAN.R-​proje​ct.​org/​packa​ge=​phoen​ics

https://CRAN.R-project.org/package=phoenics
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Description of the proposed approach

Phoenics method

Each metabolite belongs to one or several metabolic pathways Ml . The proposed 
method is made of two steps: 

1.	 Factor analysis representation to extract pathway signatures For each metabolic path-
way Ml , and similarly to Wieder et al. [20], a PCA is performed on the metabolite 
quantification matrix of this pathway, Zl = (Xij)i=1,...,nT , j∈Ml

 . The scores of the m∗
l  

first principal components are extracted in the (nT ×m∗
l )-matrix Al . In the follow-

ing, to simplify the notations, we will generically refer to a as one of the columns of 
one of the matrix Al , which corresponds to one of the principal components for a 
given pathway.

2.	 Mixed model to test pathways For each principal component a, the following mixed 
model is then estimated: 

 with

•	 βt the fixed effect of time t;
•	 θd the fixed effect of condition d;
•	 ui ∼ N (0,G) the random effect of individual i, with G the covariance matrix;
•	 ǫtdi ∼ N (0, σ 2

ǫ ) the residuals of the model, which are assumed to be i.i.d.

The significance of a given fixed effect f is then tested using the likelihood ratio test com-
paring the full model of Equation  (1) to a restricted model that does not contain the 
effect f. To test the time effect, the restricted model is

and to test the condition effect, the restricted model is

For a given metabolic pathway Ml , this estimation is repeated for each column of Al , 
which results in m∗

l  p-values. The Simes’ procedure [26] is used to aggregate the m∗
l  

p-values: This procedure controls the Type I error of the null hypothesis H 0 = ∩
m∗

l
j=1

 H 0j , 
where H 0j is the absence of effect of f on the jth column of Al.

Note that the Simes’ procedure relies on the assumption of independence or Positive 
Regression Dependence on a Subset (PRDS) among tests, which is known to be diffi-
cult to assess in practical situations. However, the procedure is known to be robust to 
deviations from independence [27, 28] and PRDS is also the weakest known assumption 
under which the False Discovery Rate (FDR) is controlled by the Benjamini and Hoch-
berg procedure [29, 30]. Hence, despite the fact that there is no formal guarantee that 
principal components satisfy the PRDS property, we consider the use of the Simes’ pro-
cedure reasonable due the robust nature of the PRDS condition.

As a consequence, this approach leads us to obtain a single p-value by metabolic path-
way for each tested effect f. Finally, since multiple p-values are obtained (one for each 

(1)a = βt + θd + ui + ǫtdi

a = θd + ui + ǫtdi,

a = βt + ui + ǫtdi.
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pathway), an additional multiple test correction is required. We chose to control the 
FDR by using the Benjamini-Hochberg (BH) procedure [29].

In practice, the method only requires to choose the parameter m∗
l  , corresponding to 

the number of principal components on which mixed models are estimated for each 
pathway. To allow the method to retain enough information in the data to estimate each 
possible effect, we propose to set m∗

l  equal to the number of fixed effects, F. This choice 
assumes that all technical bias effects have been removed prior to the data analysis.

A variant based on partial PCA

A limitation of the approach described above is that PCA does not account for the spe-
cific structure of the data where some observations (typically those corresponding to 
measurements of a given individual) might be more correlated than others. Hence, to 
account for this particular structure of the correlation dependency between data, we 
also propose to replace the global PCA by independent PCA analyses, in the same spirit 
than the multi-table analysis called Multiple Factor Analysis (MFA) [31].

In this version, the metabolite quantification matrix of the tested path-
way is viewed as a set of matrices, each corresponding to a given time point, t: 
Z
(t)
l = (Xij)i=n(t−1)+1,...,nt, j∈Ml

 for t = 1, . . . ,T  . MFA then performs an individual 
(called partial) PCA of each matrix and eventually average them, weighting each PCA by 
its first eigenvalue so as to balance each block’s contribution.

Here, we stick to the first step of the MFA and retrieve the scores of the m∗
l  first prin-

cipal components of the partial analyses to stack them into a (nT ×m∗
l )-matrix Al . The 

second step (corresponding to the mixed model) is then performed in the same way as in 
Sect. “Phoenics method”.

Note, however, that while this approach is better appropriate to test the condition 
effect, it is not relevant for the time effect, as the latter is expected to be erased by per-
forming the independent partial analyses.

Experimental and semi‑synthetic datasets

Effect of antibiotics in mice

The method performances were assessed using experimental data from Choo et al. [32], 
available in the MetaboLights metabolomics data repository [33] with the identifier 
MTBLS​422. This study investigates the changes in fecal metabolome induced by antibi-
otics. The data contains nuclear magnetic resonance (NMR) spectra obtained from 2× 8 
mouse feces-based fluid subjected or not to an antibiotics treatment (vancomycin-imi-
penem). In the sequel, the treatment status of the mouse is called the “condition” and is 
a fixed effect of interest (e.g., metabolite quantification differences between conditions 
are tested). In addition, in each condition, spectra have been acquired from samples col-
lected at three time points (5.5, 7.5, or 9), and the time fixed effect thus corresponds to 
a second fixed effect of interest. The dataset contains 46 observations (the design is not 
complete: 2 observations are missing compared to the complete design).

Metabolite quantifications were estimated from 1D 1 H NMR spectra with the R pack-
age ASICS [34]. This resulted in the quantification of 176 metabolites in total. These 
quantifications represent the relative abundance of metabolites within samples. Metabo-
lite pathways were retrieved using the R package KEGGREST [35], which queries the 

https://www.ebi.ac.uk/metabolights/editor/MTBLS422
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KEGG database [36] for pathways specific to a given organism (here, Mus musculus, 
with KEGG Pathway database from release 109), as implemented in our package phoe-
nics. A total number of 98 pathways were obtained, containing at least two quantified 
metabolites for a total of 128 metabolites found in the pathways. The average number 
of metabolites in the different pathways is just above 6 (with a maximum of 32) whereas 
each metabolite is included in average in more than 4 pathways, with a maximum of 31. 
This highlights the fact that, most pathways share some common metabolites, i.e., they 
overlap.

Effect of irritable bowel syndrome in human

A second experimental dataset, from Mars et  al. [37], was used to assess the method 
performances. Data are available in the MetaboLights metabolomics data repository [33] 
with the identifier MTBLS​1396. This study conducts a longitudinal analysis to investi-
gate the gut metabolome in the context of irritable bowel syndrome. The 1D 1 H NMR 
spectra were obtained from 51× 2 human stool samples affected or not by the irrita-
ble bowel syndrome (IBS-C). In each condition, samples have been collected at 8 time 
points. The condition and the time effects correspond to the fixed effects of interest.

The R package ASICS [34] was used to estimate metabolite quantifications, result-
ing in 169 metabolites. Using the R package KEGGREST [35], a total of 104 metabolic 
pathways were retrived from KEGG database [36] (Homo sapiens specific database, with 
KEGG Pathway database from release 113), containing at least two quantified metabo-
lites for a total of 124 metabolites found in the pathways.

Performances assessment through simulations

In addition to their analysis with phoenics, mice data were used to generate several 
semi-synthetic datasets to assess three criteria:

•	 The control of Type I error rate. Semi-synthetic datasets were simulated under the 
null hypothesis by erasing the effect of interest. These datasets are named Simulat‑
edH0.

•	 The statistical power. A targeted signal was added in some pathways. More precisely, 
k = 3 pathways were randomly selected, in which a difference for the effect of inter-
est was introduced. Several semi-synthetic datasets, referred as SimulatedH1, were 
generated according to different scenarios corresponding to different effect sizes. In 
order to assess the method variability, the random selection of the k metabolic path-
ways was repeated 100 times for each scenario.

•	 The statistical power with respect to the percentage of differential metabolites. The 
largest pathway in the semi-synthetic dataset was utilized to assess the percentage of 
differential metabolites required within a pathway for it to be detected as significant. 
This pathway, named “ABC transporters”, consists of 32 metabolites. Similarly to 
SimulatedH1, a difference between the levels of the effect of interest was introduced 
for p̃ selected metabolites in “ABC transporters” pathway (for p̃ varying from 1 to 
the maximum possible number, 32). To obtain results comparable with the previous 
simulations, a difference was also introduced for all of the metabolites in k − 1 other 
(randomly selected) pathways, using the same simulation process. These datasets are 

https://www.ebi.ac.uk/metabolights/editor/MTBLS1396
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further referred to as SimulatedVSize. The choice of the p̃ differential metabolites 
in “ABC transporters” and of the other k − 1 pathways was randomly replicated 20 
times to also assess the variability of the results.

Datasets simulating separately the time and the condition as the effect of interest were 
first generated to test each effect individually. Then, a third dataset was used to test both 
time and condition effects simultaneously, where differences for both effects were intro-
duced. The details of the simulation processes, depending on the effect of interest, are 
provided in the following paragraphs.

Testing the condition effect

The simulation process under the null hypothesis of this dataset, named SimulatedH0_
Condition, is based on an adaptation of the method described in Wieder et al. [20]: the 
condition effect was erased by randomly permuting condition status among samples. 
The time status was not permuted to preserve the within-individual correlation struc-
ture. Thus, the time effect from the original dataset (if present) remain in the simulated 
data.

To simulate SimulatedH1_Condition and SimulatedVSize_Condition, the difference 
between conditions was artificially introduced in the selected metabolites, by simulating 
new quantifications as:

with j ∈ ∪k
l=1

Ml , Xij the quantification of metabolite j for individual i at time t and γd 
a chosen factor controlling the effect size in condition d. Thus, in this simulation, the 
artificial condition effect is expected to be detected in the k pathways while a time effect 
may also be present. Several scenarios were simulated, corresponding to different γd . 
The values chosen for γd are provided in Table 1.

Testing the time effect

In simulation SimulatedH0_Time, the time effect was erased by replacing the metabolite 
quantifications at time points 7.5 and 9 by the metabolite quantifications at time point 
5.5. Then, a noise bij was added to the metabolite quantifications at all time points, with 
bij ∼ N (0, σ 2

b ) , σ
2
b = 0.05× [max(X)−min(X)] where X is the metabolite quantifica-

tion matrix.
For simulations SimulatedH1_Time and SimulatedVSize_Time, the introduction of an 

artificial condition effect to chosen pathways is performed by simulating the quantifica-
tions as:

(2)∀ i = 1, . . . , nT , ∀ d = 1, . . . ,D, X̃ij = Xij × γd

Table 1  SimulatedH1_Condition values of γd according to the value of d and to the scenario

Scenario 1 Scenario 2 Scenario 3

d = “control” 1 1 1

d = “vancomycin-imipenem” 10 3 2
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where

•	 S =







(Xij)i∈[1,...,n]
.
.
.

(Xij)i∈[1,...,n]






 is a (nT ×m)-matrix where the (Xij)i∈[1,...,n] matrix, which corre-

sponds to the quantification of each metabolite at the first time t = 5.5 , is repeated T 
times;

•	 j ∈ ∪k
l=1

Ml;
•	 γt is a chosen factor controlling the effect size at time step t;
•	 bij ∼ N (0, σ 2

b ) where σ 2
b = 0.05× [max

(

Sij × γt
)

−min
(

Sij × γt
)

].

The values chosen for γt , corresponding to the different scenarios, are provided in 
Table 2.

Testing the condition and the time effects simultaneously

To simulate SimulatedH0_ConditionTime, the condition effect was first erased in the 
same way than in simulation SimulatedH0_Condition. Then, to erase the time effect, the 
same process than in simulation SimulatedH0_Time is used.

Then, the introduction of artificial effects for SimulatedH1_ConditionTime and Simu-
latedVSize_ConditionTime also combines the two previous simulation processes by first 
simulating the time effect as in Equation (3) and then adding a condition effect using 
Equation (2).

Evaluation methodology

Comparison with existing methods

We compared phoenics to the reference method for metabolic pathway analysis, which 
is enrichment analysis (also called ORA) [16, 38]. The background set was chosen as the 
set of all identifiable metabolites, e.g., all metabolites in the reference database of the 
package ASICS (180 metabolites). The significance of metabolites was tested using the 
same linear mixed model as in phoenics. Metabolite p-values were corrected for multi-
ple testing using BH correction, except for H 0 scenarios where raw p-values were used 
(since no signal is expected, BH correction at metabolite level is expected to filter out all 
metabolites). Fisher’s exact test was then used to calculate the pathway p-values and BH 
correction was used to account for multiple testing across pathways.

(3)∀ i = 1, . . . , nT , ∀ t = 1, . . . ,T , X̃ij = Sij × γt + bij

Table 2  SimulatedH1_TimeValues of γt according to the value of t and to the scenario

Scenario 1 Scenario 2 Scenario 3 Scenario 4

t = 5.5 1 1 1 1

t = 7.5 5 2 1.5 1.2

t = 9 10 3 2 1.5
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phoenics was also compared to a multivariate FCS method, ktest [24]. This method 
relies on kernel-based testing. More precisely, it compares the distribution of gene sets 
expression transformed by a kernel Fisher Discriminant Analysis (kFDA) [39] using a 
Hotelling’s test [40] in the kernel feature space. However, this approach is restricted to 
two conditions only. Therefore, for the test of time effect, pairwise comparisons of the 
three dates were conducted using the first two dimensions. The first two dimensions 
were also used for the test of condition effect. Similarly to what is done in phoenics, the 
Simes procedure was used to aggregate the six (2 dimensions × 3 pairs of dates) or two 
(2 dimensions × 1 pair of conditions) resulting p-values. Again, BH correction was used 
afterwards to account for multiple testing across pathways.

We also compared phoenics to another multivariate FCS method, globaltest [21]. 
This method relies on generalized linear model [41] and allows to test the association 
between groups of genes and an outcome, while accounting for covariates. The resulting 
p-values were corrected for multiple testing across pathways using the BH method.

Assessing method quality from simulated datasets

The control of Type I error was assessed using SimulatedH0 datasets. The percentage of 
pathways detected as positive by phoenics was calculated.

Metabolic pathways generated in SimulatedH1 have been classified into categories, 
presented in Table 3, according to whether they have been explicitly simulated as dif-
ferential for the targeted effect or not. However, due to the overlap among pathways, our 
simulation of differential pathways resulted in a (small or large) proportion of metabo-
lites in other pathways also being differential. Then, a third category has been defined for 
these overlapping pathways to which we can not give a clear status (differential or not). 
The number of simulated pathways in each category is presented in Table 3.

The method quality was assessed by counting the number of pathways in each cat-
egory of Table  3, among the 100 generated datasets. Precision (or positive predictive 
value, PPV), corresponding to the number of true positives over the total number of 
pathways declared positive, and recall (or sensitivity), corresponding to the number of 
true positives over the number of true differential pathways, were also calculated.

Finally, using SimulatedVSize, the percentage of significant “ABC transporters” path-
ways across the repetitions was computed and compared to the number of metabolites 
simulated as differential in this pathway.

The performances of the different methods on the overlapping pathways are difficult to 
analyze as we have no ground truth for them. To provide some results on these pathways, 
we compared the distributions of the percentage of differential (and non-differential) 

Table 3  SimulatedH1. Number and categories of simulated pathways

Significant Not significant Number of 
simulated 
pathways
(Condition)

Number of 
simulated 
pathways
(Time)

Number of 
simulated 
pathways
(ConditionTime)

Differential True positive False negative 300 300 300

Not differential False positive True negative 3175 3071 3055

Overlapping pathways Positive Negative 6325 6429 6445
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metabolites in the overlapping pathways. A relevant method should be able to differenti-
ate overlapping pathways with a high number of metabolites simulated as differential 
(expected to be detected as differential) from overlapping pathways with a small number 
of metabolites simulated as differential (expected to not be detected as differential).

All the scripts used to perform the analyses of this article are available at https://​forge​
mia.​inra.​fr/​panor​amics/​rlib_​bmcbi​oinfo​rmati​cs_​2024.

Results and discussion
In the following, phoenicsPCA will refer to the PCA-based approach, while the MFA 
based approach will be referred to as phoenicsMFA.

Testing the condition effect

Assessing the control of Type I error

Table 4 gives the number of tests (falsely) detected under the null hypothesis (at a sig-
nificance level of 5%) on the dataset SimulatedH0_Condition. It demonstrates that the 
Type I error is controlled by all the methods when testing the condition effect.

Assessing the performances of phoenics compared to alternative approaches

Table 5 presents the number of pathways declared positive for the condition effect by 
phoenicsPCA, phoenicsMFA, enrichment analysis, ktest, and globaltest in each path-
way category for all three scenarios (SimulatedH1_Condition). These results are further 

Table 4  SimulatedH0_Condition. Percentage of pathways detected as (or tests declared) positive 
under the null hypothesis simulation setting for a p-value threshold of 5%

Condition

phoenicsMFA 1.10%

phoenicsPCA 4.08%

Enrichment 2.04%

ktest 0.00%

globaltest 0.00%

Fig. 1  SimulatedH1_Condition. Positive predictive value (PPV) and sensitivity. Globaltest does not appear in 
the figure since it detects no positive pathways therefore no PPV can be calculated

https://forgemia.inra.fr/panoramics/rlib_bmcbioinformatics_2024
https://forgemia.inra.fr/panoramics/rlib_bmcbioinformatics_2024
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illustrated in Fig. 1, comparing the PPV and sensitivity of the five methods. Across sce-
narios, the sensitivity is higher with phoenicsMFA and phoenicsPCA than with enrich-
ment analysis, ktest, and globaltest since phoenicsMFA and phoenicsPCA consistently 
detect a larger number of true positive pathways compared to the enrichment analysis 
and ktest. Additionally, as the simulated effect size decreases from Scenarios 1 to 3, the 
number of true positive pathways detected also decreases. phoenicsPCA and phoenic-
sMFA yield similar results in Scenario 1, but the difference between them increases in 
Scenarios 2 and 3. More specifically, in Scenario 3, phoenicsMFA identifies 54% of the 
differential pathways as positive, whereas only 28% of these pathways are identified as 
positive by phoenicsPCA. Furthermore, phoenicsMFA, the enrichment analysis, ktest, 
and globaltest exhibit no false positives (their PPV is equal to 1), contrary to phoenic-
sPCA (that thus has a lower PPV). Overall, these findings highlight the larger power of 
phoenicsMFA compared to the other methods for detecting differential pathways, espe-
cially in cases where the signal in the data is weaker, and without compromising the cor-
rect control of the Type I error.

phoenicsMFA and phoenicsPCA declare positive, respectively, 50.8% and 43.6% of the 
overlapping pathways in Scenario 1, while only 9.2% and 3.1% are positive with enrich-
ment analysis and ktest, respectively. The percentage of positive overlapping pathways 
decreases in Scenarios 2 and 3 but phoenicsMFA and phoenicsPCA consistently identify 
the highest percentage of positive overlapping pathways.

To further investigate the relevance of positive overlapping pathways, Fig. 2 illustrates 
the percentage of differential metabolites in the overlapping pathways, categorized as 
positive or negative by the five methods and three scenarios. As expected, the percent-
age of differential metabolites is higher in the positive overlapping pathways compared 

Table 5  SimulatedH1_Condition. Counts of pathways in each category with semi-synthetic data 
simulation Scenario 1, 2, and 3. The percentages of pathways corresponding to the counts can be 
found in Additional File 1: Table S1

True 
positive

True 
negative

False 
positive

False 
negative

Positive 
(overlap)

Negative 
(overlap)

Scenario 1 phoenic‑
sMFA

251 2789 0 33 3065 2962

phoenicsPCA 239 3153 22 61 2762 3563

Enrichment 127 3175 0 173 584 5741

ktest 38 3175 0 262 199 6126

globaltest 0 3175 0 300 0 6325

Scenario 2 phoenic‑
sMFA

228 2789 0 56 2327 3700

phoenicsPCA 180 3161 14 120 1886 4439

Enrichment 68 3175 0 232 353 5972

ktest 0 3175 0 300 0 6325

globaltest 0 3175 0 300 0 6325

Scenario 3 phoenic‑
sMFA

163 2789 0 121 1631 4396

phoenicsPCA 85 3172 3 215 1018 5307

Enrichment 1 3175 0 299 2 6323

ktest 0 3175 0 300 0 6325

globaltest 0 3175 0 300 0 6325
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to negative pathways across all methods and scenarios. The positive overlapping path-
ways identified by phoenicsMFA have a lower percentage of differential metabolites 
compared to those identified by phoenicsPCA, enrichment analysis, and ktest. In addi-
tion, the positive overlapping pathways identified by phoenicsMFA show a percentage of 
differential metabolites that is more distinct from that of the negative overlapping path-
ways, compared to the other methods. This is consistent with the larger detection power 
of phoenicsMFA.

Assessing the detection power

Finally, Fig. 3 shows the detection power of the five methods with respect to the percent-
age of metabolites detected as differential in the pathway (SimulatedVSize_Condition). 
Again, phoenicsMFA shows a higher percentage of detection for a given percentage of 
metabolites simulated in the pathway. In addition, the difference between phoenicsMFA 
and the other methods increases as the effect size decreases (from Scenarios 1 to 3). 

Fig. 2  SimulatedH1_Condition. Percentage of differential metabolites in the overlapping pathways. Some of 
these pathways have a percentage of differential metabolites equal to 100% because they are included in a 
differential pathway

Fig. 3  SimulatedVSize_Condition. Percentage of times the pathway “ABC transporters” is detected positive 
over the 20 simulations with respect to the percentage of differential metabolites in the pathway
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Also, as expected, when the effect size is low (Scenario 3), a larger percentage of dif-
ferential metabolites is required for the pathway to be declared significant. These results 
are consistent with the previous ones and confirm that phoenicsMFA has a larger detec-
tion power, especially when the effect size is low. Therefore, phoenicsMFA is well-suited 
to test the condition effect.

Testing the time effect

The number of tests (falsely) detected under the null hypothesis (at a significance level 
of 5%) on the dataset SimulatedH0_Time demonstrates that the Type I error is con-
trolled by all methods but globaltest (slightly above the 5% threshold), when testing the 
time effect (Table 6). In addition, the Type I error with phoenicsPCA is close to the 5% 
threshold, suggesting that phoenicsPCA has a better power than the other methods of 
analysis.

Table 7 highlights the fact that phoenicsMFA does not identify any positive pathway 
across the scenarios (SimulatedH1_Time). In contrast, phoenicsPCA and globaltest 
consistently detects a larger number of true positive pathways compared to the other 
methods, resulting in a higher sensitivity (Fig. 4). Comparing the PPV and sensitiv-
ity between these two methods, globaltest has better performances than phoenic-
sPCA, even if globaltest detects a larger number of false positive pathways compared 
to phoenicsPCA when the effect size decreases (Scenarios 3 and 4). The results on the 
overlapping pathways (Table 7) are consistent with the larger detection power of the 

Table 6  SimulatedH0_Time. Percentage of pathways detected as (or tests declared) positive under 
the null hypothesis simulation setting for a p-value threshold of 5%

Time

phoenicsMFA 0.00%

phoenicsPCA 4.08%

Enrichment 1.02%

ktest 0.00%

globaltest 5.10%

Fig. 4  SimulatedH1_Time. Positive predictive value (PPV) and sensitivity. phoenicsMFA and ktest are not 
shown since they detect no positive pathways therefore no PPV can be calculated
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time effect of phoenicsPCA and globaltest, as they declare positive 45% and 55% of 
the overlapping pathways, respectively.

Further investigating the relevance of these overlapping pathways, Fig.  5 shows 
that positive and negative overlapping pathways identified by globaltest have similar 

Table 7  SimulatedH1_TimeCounts of pathways in each category with semi-synthetic data 
simulation Scenario 1, 2, 3, and 4. The percentages of pathways corresponding to the counts can be 
found in Additional File 1: Table S2

True 
positive

True 
negative

False 
positive

False 
negative

Positive 
(overlap)

Negative 
(overlap)

Scenario 1 phoenic‑
sMFA

0 3071 0 300 0 6429

phoenicsPCA 210 2995 76 90 2919 3510

Enrichment 83 3071 0 217 424 6005

ktest 0 3071 0 300 0 6429

globaltest 224 3006 65 76 3542 2887

Scenario 2 phoenic‑
sMFA

0 3071 0 300 0 6429

phoenicsPCA 178 3010 61 122 2344 4085

Enrichment 66 3071 0 234 342 6087

ktest 0 3071 0 300 0 6429

globaltest 202 3010 61 98 3239 3190

Scenario 3 phoenic‑
sMFA

0 3071 0 300 0 6429

phoenicsPCA 143 3022 49 157 1658 4771

Enrichment 36 3071 0 264 197 6232

ktest 0 3071 0 300 0 6429

globaltest 185 3013 58 115 2850 3179

Scenario 4 phoenic‑
sMFA

0 3071 0 300 0 6429

phoenicsPCA 55 3049 22 245 561 5868

Enrichment 6 3071 0 294 42 6387

ktest 0 3071 0 300 0 6429

globaltest 125 3025 46 175 2226 4203

Fig. 5  SimulatedH1_Time. Percentage of differential metabolites in the overlapping pathways. Some of 
these pathways have a percentage of differential metabolites equal to 100% because they are included in a 
differential pathway
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percentages of differential metabolites, which makes dubious the relevance of the pos-
itive overlapping pathways. In contrast, positive and negative overlapping pathways 
identified by phoenicsPCA exhibit distinctive percentages of differential metabolites.

These results are also confirmed by Fig. 6 that shows the higher percentage of detection 
for a given percentage of metabolites simulated in the pathway (SimulatedVSize_Time).

These findings highlight the larger power of phoenicsPCA compared to the other 
methods for detecting differential pathways, even in cases where the signal in the data 
is weaker, and without compromising the correct control of the Type I error. It also con-
firms that phoenicsMFA is not relevant to test the time effect.

Testing the condition and the time effects simultaneously

Similarly to the previous simulations, the number of tests (falsely) detected under the 
null hypothesis (at a significance level of 5%) on dataset SimulatedH0_ConditionTime 
demonstrates that the Type I error is controlled by all the methods when testing for the 
time and condition effects, except for globaltest that does not control the Type I error 
when testing for the time effect.

The test of the time effect leads to the same conclusions as those obtained when path-
ways were differential for the time effect only. Complete results can be found in Addi-
tional File 1: Table S4, Figs. S1, S2, and S3.

Regarding the test of the condition effect (SimulatedH1_ConditionTime), phoenic-
sPCA has a higher sensitivity than phoenicsMFA and enrichment analysis across sce-
narios (Fig.  7) since phoenicsPCA detects a larger number of true positive pathways 
(Table 8). Furthermore, phoenicsPCA exhibits a smaller number of false positives com-
pared to phoenicsMFA so have a higher PPV. Additionally, ktest exhibits high sensitivity 
and PPV in Scenario 1 but detects no more positive when the effect size decreases in the 
other scenarios.

The study of the percentage of differential metatabolites in the overlapping pathways 
(Additional File 1: Fig.  S4) and the detection power with respect to the percentage of 
metabolites detected (SimulatedVSize_ConditionTime; Additional File 1: Fig. S5) con-
firm the better detection power of phoenicsPCA for the test of the condition and the 
time effects, when pathways are differential for both effects. If we compare these results 
with those obtained when only a condition effect is present, phoenicsPCA seems to be 
less perturbated in the detection of the effect than other approaches.

Fig. 6  SimulatedVSize_Time. Percentage of times the pathway “ABC transporters” is detected positive over 
the 20 simulations with respect to the percentage of differential metabolites in the pathway
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Analysis of antibiotics effect with phoenics

Table 9 gives an excerpt of detected pathways found by phoenicsPCA and phoenicsMFA 
for the time and the condition effects, selecting only the pathways that are commented 

Fig. 7  SimulatedH1_ConditionTime. Positive predictive value (PPV) and sensitivity to test the condition 
effect. Enrichment for Scenarios 3 and 4, ktest for Scenarios 2, 3, and 4, and globaltest are not shown since 
they detect no positive pathways therefore no PPV can be calculated

Table 8  SimulatedH1_ConditionTime.  Counts of pathways in each category with semi-synthetic 
data simulation Scenario 1, 2, 3, and 4 for the test of the condition effect. The percentages of 
pathways corresponding to the counts can be found in Additional File 1: Table S3

Condition effect

True 
positive

True 
negative

False 
positive

False 
negative

Positive 
(overlap)

Negative 
(overlap)

Scenario 1 phoenic‑
sMFA

147 2971 84 153 2381 4063

phoenicsPCA 182 3013 42 118 2307 4138

Enrichment 53 3055 0 247 296 6149

ktest 179 3055 0 121 2300 4145

globaltest 0 3055 0 300 0 6445

Scenario 2 phoenic‑
sMFA

112 2997 58 188 1735 4710

phoenicsPCA 140 3026 29 160 1619 4826

Enrichment 25 3055 0 275 183 6262

ktest 0 3055 0 300 0 6445

globaltest 0 3055 0 300 0 6445

Scenario 3 phoenic‑
sMFA

21 3035 20 279 326 6119

phoenicsPCA 40 3044 11 260 519 5962

Enrichment 0 3055 0 300 4 6441

ktest 0 3055 0 300 0 6445

globaltest 0 3055 0 300 0 6445

Scenario 4 phoenic‑
sMFA

0 3043 12 300 22 6423

phoenicsPCA 1 3052 3 299 27 6418

Enrichment 0 3055 0 300 0 6445

ktest 0 3055 0 300 0 6445

globaltest 0 3055 0 300 0 6445
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in this section. Full results can be found in Additional File 2: Table S5. For the sake of 
comparison, the results of the enrichment analysis are also provided in the same table.

Using phoenicsPCA, 72 pathways are found significant for the time effect and one 
pathway is found significant for the condition effect. phoenicsMFA does not detect any 
pathway as significant for the time effect but declares 5 pathways as significant for the 
condition effect. One of these pathways corresponds to the one identified as significant 
by phoenicsPCA, highlighting the consistency between both methods. The enrichment 
analysis does not detect any pathway as significant, neither for the time nor for the con-
dition effects.

The percentage of significant metabolites in the pathways for the time effect, obtained 
by the analysis of each metabolite individually by phoenicsPCA, is presented in Fig. 8 
and Table 9. As expected, the significant pathways contain a larger percentage of signifi-
cant metabolites than the non-significant pathways. The median percentage of signifi-
cant metabolites in the non-significant pathways detected by phoenicsPCA is low. Note 
that for both effects and all pathways on a standard desktop computer, phoenicsPCA 
lasts 60 s, phoenicsMFA 63 s, and the enrichment method 44 s.

In addition, some pathways are significant for the time effect with phoenicsPCA but 
not with the enrichment analysis due to the small number of significant metabolites in 
the individual metabolite analysis. This underscores a major difference between phoe-
nicsPCA and the enrichment analysis: phoenicsPCA performs a multivariate analysis, 

Table 9  Excerpt of the results of the test of time and condition effects on experimental mice 
antibiotics data with phoenicsPCA, phoenicsMFA and enrichment analysis. The percentage of 
significant metabolites in the pathways comes from the individual test of the metabolites. Full result 
table is available in Additional File 2: Table S5

Pathway phoenicsPCA phoenicsMFA Enrichment % of 
significant 
metabolites
(Time)

% of 
significant 
metabolites
(Condition)

Number of 
quantified 
metabolites 
in
the 
pathway

Phenylalanine, 
tyrosine and
tryptophan 
biosynthesis

Time - - 67% 0% 3

Primary bile 
acid
biosynthesis

Time - - 50% 0% 2

Bile secretion Time - - 50% 0% 4

Tryptophan 
metabolism

Time - - 50% 0% 4

Valine, leucine 
and isoleucine 
degradation

Time - - 86% 0% 7

Valine, leucine 
and isoleucine 
biosynthesis

Time - - 38% 0% 8

Choline 
metabolism in 
cancer

Time, Condi‑
tion

Condition - 0% 0% 2

Butanoate 
metabolism

- Condition - 64% 0% 11
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considering the correlations between metabolites in a pathway, thus providing a bet-
ter representation of the overall pathway dynamics. It is thus able to detect differ-
ential pathways with a large proportion of metabolites presenting small size effects 
and non-significant but consistent variations. For example, the “Choline metabolism” 
pathway is found to be significant, even though it contains only two metabolites, nei-
ther of which are individually significant. This highlights the strength of the method-
ology and phoenics’ ability to detect subtle but accumulated pathway modifications, 
even in small pathways. In contrast, the enrichment analysis relies only on the num-
ber of significant metabolites obtained in independent analyses, without considering 
the correlation between metabolites. It is thus unable to detect pathways cumulat-
ing several metabolites with small size and consistent effects. Furthermore, if both 
ORA and phoenics include a two-step multiple testing correction, the first step is per-
formed at metabolite level for ORA, whereas it is less stringent because performed at 
dimension reduction level for phoenics. However, additional analyses not shown in 
the article showed that, despite not statistically valid, removing the multiple testing 
correction at metabolomic level in ORA analysis does not change the conclusion of 
the comparison.

From a biological point of view, Choo et al. [32] did not study the longitudinal effect 
of antibiotics on metabolome so our results can not be directly compared to what they 
did. Nevertheless, several pathways identified by phoenicsPCA are linked to functions 
of the gut metabolome. For instance, a major branch of the “Tryptophan metabolism” 
pathway is the kynurenine pathway, which is important for immunomodulatory micro-
biota metabolites [42, 43]. The pathways “Primary bile acids biosynthesis” and “Bile 
secretion” are identified as significant with phoenicsPCA. These findings are supported 
by Mars et al. [37], de Aguiar Vallim et al. [44], and Liu et al. [45] who stated that bile 
acids are common fecal metabolites that have several functions in the gut microbiota, 
including the regulation of the gut microbiota composition. Furthermore, Just et al. [46] 
also observed changes in the metabolome induced by bile acids supplementation in the 
diet of mice. The pathway “Phenylalanine, tyrosine and tryptophan biosynthesis” is also 
found significant and, as mentioned by Liu et al. [45], phenylalanine and tyrosine can be 
synthesized by the gut microbiota. Finally, the pathways “Valine, leucine and isoleucine 

Fig. 8  Percentage of significant metabolites for the time effect with respect to the pathway status 
(significant or not for phoenicsPCA)
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degradation” and “Valine, leucine and isoleucine biosynthesis” have already been identi-
fied in mice feces-based study by Zeng et al. [47].

For the condition effect, we observe a larger number of significant pathways with 
phoenicsMFA than with phoenicsPCA, whereas these pathways are also significant for 
the time effect. Investigating these additional significant pathways identified by phoe-
nicsMFA, we find that they contain a larger number of metabolites compared to the 
non-significant pathways. The analysis of each metabolite individually results in no sig-
nificant metabolite. However, the pathway “Choline metabolism in cancer” is significant 
with phoenicsPCA, as it is also the case for the time effect, and with phoenicsMFA. This 
is consistent with the fact that Liu et al. [48] previously reported that choline metabolism 
is perturbed by some antibiotics, including vancomycin that has been used in the experi-
ment. In addition, the pathway “Butanoate metabolism” is significant with phoenicsMFA 
which is consistent with the fact that butanoate, also named butyrate, is produced in the 
colon and is known to play an important role in the gut health [49, 50]. Moreover, Yap 
et al. [51] observed a change in the amount of butyrate on mice treated with vancomycin 
compared to non-treated mice. Thus, pathways identified by phoenicsPCA and phoenic-
sMFA play roles connected to the gut metabolome functions.

Analysis of irritable bowel syndrome with phoenics

An excerpt of significant pathways found by phoenicsPCA, phoenicsMFA, and com-
pared to enrichment analysis, for the time and the condition effect is given in Table 10. It 
includes only the pathways commented in this section, full results can be found in Addi-
tional File 3: Table S6.

For the time effect, two pathways are found significant by phoenicsPCA, whereas no 
pathway is found significant by phoenicsMFA and enrichment analysis. Mars et al. [37] 
did not study the longitudinal effect of the irritable bowel syndrome on metabolome, 
except for one metabolite. However, phoenicsPCA found significant the pathway “Fer-
roptosis” for the time effect. Several studies [52–54] have shown the implication of fer-
roptosis, a form of cell death induced by an excess of iron, in irritable bowel syndrome. 

Table 10  Excerpt of the results of the test of time and condition effects on experimental human 
irritable bowel syndrome data with phoenicsPCA, phoenicsMFA and enrichment analysis. The 
percentage of significant metabolites in the pathways comes from the individual test of the 
metabolites. Full result table is available in Additional File 3: Table S6

Pathway phoenicsPCA phoenicsMFA Enrichment % of 
significant 
metabolites
(Time)

% of 
significant 
metabolites
(Condition)

Number of 
quantified 
metabolites 
in
the 
pathway

Ferroptosis Time, Condi‑
tion

Condition - 50% 25% 4

Purine 
metabolism

Condition - - 0% 17% 12

Carbohydrate 
digestion
and absorp‑
tion

Condition Condition Condition 0% 100% 5



Page 20 of 23Guilmineau et al. BMC Bioinformatics          (2025) 26:105 

This pathway was not identified in the study of Mars et al. [37], highlighting the benefits 
of performing longitudinal analysis with phoenics to identify new relevant pathways.

For the condition effect, 72 pathways are found significant by phoenicsPCA, 56 by 
phoenicsMFA and four by the enrichment analysis. For the condition effect, the pathway 
“Purine metabolism” is detected exclusively by phoenicsPCA. This pathway was men-
tioned by Mars et al. [37] as potentially being involved in the pathophysiology of irritable 
bowel syndrome. The metabolite “hypoxanthine” is contained in this pathway and was 
measured at lower levels in IBS-C samples by Mars et al. [37]. The pathway “Carbohy-
drate digestion and absorption” is detected by all methods. It is confirmed by the pres-
ence of the metabolites “acetate” and “butanoic acid” (also known as “butyrate”) in the 
pathway, which were identified by Mars et al. [37] as being present at lower abundance 
in IBS-C samples compared to healthy controls. In addition, Mars et al. [37] also identi-
fied significant differences between the IBS-C and control samples in a genomic region 
associated with butyrate production. This result is confirmed by [55, 56], which showed 
that poor absorption and digestion of carbohydrate can induce symptoms of irritable 
bowel syndrome. In conclusion, phoenics was able to identify relevant pathways for the 
analysis of irritable bowel syndrome.

Conclusion
The article presents an approach to perform a differential and longitudinal analysis of 
metabolic pathways, available in the R package phoenics. The method is based on factor 
analysis and mixed linear models to perform the analysis at a pathway level and it does 
not require prior analysis of metabolites. Two versions are available, respectively based 
on PCA and MFA pathway summaries. Since MFA is a multi-table analysis method 
designed to analyze tables with matched individuals, it is a natural way to extract multi-
variate signal from datasets with multiple measurements (e.g., time in multivariate lon-
gitudinal analyses) and can further be used to test any fixed effect except for the one 
structuring the multiple measurements. Indeed, the effect associated with repeated 
measurements (e.g., the time) is lost during MFA (and thus can not be tested). This effect 
is, however, properly captured by the PCA version of phoenics. Note that two time 
points are, in theory, sufficient to fit a simple mixed effect model. However, this number 
of time points might be too little for the estimation of the random effect to be of good 
quality. For a better quality of the method results, we recommend using phoenics with 
three or more time points.

The application of phoenics on semi-synthetic data showed that the method detects 
differential pathways with a higher power than existing methods while properly control-
ling the Type I error rate. On a real datasets, phoenics methods were able to identify 
pathways relevant to describe the effect of antibiotics in mice and of irritable bowel syn-
drome in human on feces metabolomics.

The method is generic and flexible with respect to pathway or to metabolomics data 
types: The illustration in the article has focused on KEGG pathways and NMR data-
sets but the method is generic enough to accomodate other pathway databases or 
metabolomic quantifications coming for any other acquisition technique (such as mass 
spectrometry). It is known that pathway choice can strongly impact the results of the 
analysis [57]. The choice of KEGG is the most commonly done choice but certain KEGG 
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pathways can be so large to the point where their utility is sometimes questioned. Inves-
tigating the most appropriate pathway database or combining results from different 
databases with phoenics might thus be an interesting issue to address in future works. 
Finally, in future works, we also intend to extend this approach to the integration of lon-
gitudinal multi-omics data.
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